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a b s t r a c t

In this study, dual reciprocity boundary element method (DRBEM) is applied for solving the unsteady
flow of a viscous, incompressible, electrically conducting fluid in channels under the effect of an exter-
nally applied magnetic field and buoyancy force. Magnetohydrodynamics (MHD) equations are coupled
with the energy equation due to the heat transfer by means of the Boussinessq approximation. Then, the
2D non-dimensional full MHD equations in terms of stream function, temperature, magnetic potential,
current density and vorticity are solved by using DRBEM with implicit backward Euler time integration
scheme. Numerical results are obtained utilizing linear boundary elements and linear radial basis func-
tions approximation for the inhomogeneities, in a double lid-driven staggered cavity and in a channel
with backward facing step. The results are given for several values of problem parameters as Reynolds
number (Re), magnetic Reynolds number (Rem), Hartmann number (Ha) and Rayleigh number (Ra). With
the increase in Rem, both magnetic potential and current density circulate near the abrupt changes of the
walls. The increase in Ha suppresses this perturbation, and forces the magnetic potential lines to be in the
direction of the applied magnetic field. The boundary layer formation through the walls emerge in the
flow and current density for larger values of Ha.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

MHD deals with the interaction between the electromagnetic
fields and conducting fluids. This branch of science has a wise con-
tent of it, and can be found in many references as in [9,26]. MHD
flow and buoyancy-driven MHD flow have important applications
in control of nuclear engineering thermo-hydraulics processes,
MHD energy systems, MHD generators and magneto-plasma
dynamics.

There are lots of experimental and numerical studies on incom-
pressible fluid flow defined by Navier–Stokes equations, natural or
forced convection flows, and these type of flows under an applied
magnetic field (MHD flow). In most of the MHD flow studies, the
induced magnetic field in the fluid is neglected due to the small
magnetic Reynolds number. Applications are given mostly in cavi-
ties and some of them also include backward-facing step (BFS)
flow. BFS has attracted a great deal of attention due to its
important role in the design of many heat transfer devices, such
as cooling systems for electronic equipment, high performance
exchangers, chemical processes and energy system equipment

etc. Flow in thermally stratified and isothermal lid-driven cavities
has been the subject of extensive investigations at the environ-
mental fluid mechanics. Being a complex geometry, staggered dou-
ble lid-driven cavity as a combination of backward-facing step and
lid-driven cavity is also remarkable.

For solving Navier–Stokes equations, DQM and wavelet-based
discrete singular method (DSC) are used by Meraji et al. [21] and
Zhou et al. [33], respectively, in a staggered double lid-driven cav-
ity. Nithiarasu and Liu [25] also handled the same geometry with
the explicit characteristic-based split (CBS) scheme in view of stea-
dy and unsteady flows inside a non-rectangular double lid-driven
cavity. Biswas et al. [5] investigated the laminar incompressible
BFS flow for a wide range of Reynolds number and aspect ratios.
BFS flow at Re ¼ 800 is analyzed by using a spectral domain
decomposition method in [15], and it is found that the BFS flow
at Re ¼ 800 was stable and steady. Incompressible BFS flow equa-
tions in terms of stream function and vorticity have also been
solved employing a second-order implicit, unconditionally stable
finite difference method, Differential quadrature method (DQM)
and multidomain boundary element method in [12,28,32],
respectively.

In the numerical investigation of buoyancy-induced flow in BFS,
some outstanding studies may be mentioned. Khanafer et al. [16]
concentrates on the laminar mixed convection pulsating flow past
a BFS using finite element method (FEM) based on Galerkin
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method of weighted residuals. Barrios-Pina et al. [4] examines the
mixed convection flow over a backward-facing step passing from
steady to chaotic behavior. They found that the chaotic behavior
occurs when Gr > 56600 and Re > 238. With an expansion ratio
of 2 in BFS, buoyancy-assisting mixed convection flow is presented
by Lin et al. [19] using the finite difference scheme. The character-
istics of heat transfer in the fluid region coupled with heat transfer
in the solid region are studied by Kanna and Das [14] using alter-
nating direction implicit (ADI) method. Double diffusive mixed
convection flow in a BFS employing FEM by means of velocity–vor-
ticity formulation is given by Kumar et al. [18]. Later, Kumar and
Dhiman [17] also analyzed the laminar forced convection flow in
an adiabatic circular cylinder inserted BFS using FLUENT. Aydin
[3] has applied the stabilized subgrid FEM to the natural convec-
tion flow in BFS geometry among the different geometries. Consid-
ering the BFS as an enclosure, Chang and Tsay [8] studied the
laminar natural convection flow using SIMPLER scheme.

There are some applications for fully developed MHD flow
problems in channels or cavities when the equations are restricted
to a plane which is perpendicular to the direction of the fluid mo-
tion. A stabilized FEM solution of the steady MHD flow problem
was given by Neslitürk and Tezer-Sezgin [24] for high values of
Hartmann number. Bozkaya and Tezer-Sezgin [6] have used BEM
with a fundamental solution for coupled equations for solving
MHD flow in infinite channels and rectangular ducts. Finite volume
spectral element method is carried out for solving unsteady MHD
flow through a rectangular pipe using coupled equations in terms
of velocity and magnetic field in [31].

Buoyancy-driven flow under the influence of an applied mag-
netic field neglecting the induced magnetic field is also encoun-
tered. In [20], Lo employed the DQM in a unit square cavity as
well as the cavities with aspect ratios 2 and 3. Sathiyamoorthy
and Chamkha [30] presented the penalty FEM with bi-quadratic
rectangular elements to solve the natural convection flow of elec-
trically conducting liquid gallium.

The influence of the externally applied magnetic field on the
fluid flow is the generation of the induced magnetic field inside
the flow region when the electrical conductivity and magnetic per-
meability of the fluid are high. In order to simulate the 2D incom-
pressible MHD flow, Peaceman and Rachford alternating-direction
implicit (ADI) scheme is performed at low magnetic Reynolds
number by Navarro et al. [23]. The full MHD problem with current
density and magnetic induction equations is solved for large values
of magnetic Reynolds number using DRBEM in Bozkaya and
Tezer-Sezgin’s study [7]. Finite element method (FEM) with some
stabilization techniques is used for solving incompressible MHD
equations in [2,11]. Kang and Keyes [13] compares the two differ-
ent formulations which are FEM with an implicit time integration
scheme in terms of stream function, and a hybrid approach using
velocity and magnetic fields. FEM with a stabilization technique
is also used for solving 3D MHD flows by Salah et al. [29]. In the
presence of heat transfer, Abbassi and Nasrallah [1] investigated
the BFS MHD flow utilizing a modified control volume FEM using
standard staggered grid.

The main goal of the present study is to solve full MHD equa-
tions taking into account also the heat transfer of the fluid in two
physically important geometries. The purpose is to observe the
flow separation which occurs with a sudden change in channels
such as staggered double lid-driven cavity and backward-facing
step MHD flows. The induced magnetic field in the fluid has also
been solved for various values of magnetic Reynolds number. As
a numerical scheme, DRBEM has been made use of for solving this
most general case of MHD flow in terms of stream function, tem-
perature, magnetic potential, current density and vorticity for the
first time to the best of authors’ knowledge. DRBEM treats the
non-linear and non-homogeneous terms of a partial differential

equation as a series of interpolating functions (radial basis func-
tions). All the domain integrals are converted to the boundary inte-
grals using fundamental solution of Laplace equation and Green’s
identities. The space derivatives and unknown boundary values
of vorticity and current density are easily calculated by using
DRBEM coordinate matrix. As a boundary only method, DRBEM
gives solution on the boundary and some selected interior points
at considerably small computational expense due to the resulting
small sized discrete systems.

2. Governing equations

The two-dimensional, laminar, unsteady flow of an incompress-
ible, viscous and electrically conducting fluid is considered in chan-
nels with heat transfer mechanism, under the effect of an external
magnetic field.

MHD flows are governed by Navier–Stokes equations of
fluid dynamics and Maxwell’s equations of electromagnetics
through Ohm’s law. Buoyancy force effect is added by means of
Boussinessq approximation including energy equation coupled
to MHD equations. Thus, the governing equations are the continu-
ity, momentum, magnetic induction, and energy equations given
as
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where m is the kinematic viscosity, q0 is the reference density, lm is
the magnetic permeability, g is the gravitational acceleration, b is
the thermal expansion coefficient, r is the electrical conductivity,
T is the temperature, and a is the thermal diffusivity. u;v and
Bx;By are velocity and magnetic induction components of the veloc-
ity vector u ¼ ðu;v ;0Þ and the magnetic field vector B ¼ ðBx; By;0Þ,
respectively.

The continuity equation is satisfied introducing stream function
w as u ¼ @w=@y; v ¼ �@w=@x. Pressure terms are eliminated by
cross differentiation of Eqs. (2.3) and (2.2), and subtraction from
each other. Then, the vorticity (w) equation is obtained using
w ¼ r� u ¼ ð0;0;wÞ ¼ ð0;0; @v=@x� @u=@yÞ. Also, the magnetic
potential vector A ¼ ð0;0;AÞ is defined as B ¼ r� A in order to sat-
isfy the solenoidal nature r:B ¼ 0, and thus Bx ¼ @A=@y;
By ¼ �@A=@x. Similarly, cross differentiation of Eqs. (2.4) and
(2.5) and subtraction results in current density equation for j in
which j ¼ ð0;0; jÞ. The current density j is defined as
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Thus, the differential equations for w and j, the stream function w
and the magnetic potential A with the help of Eqs. (2.1)–(2.5) and
(2.7) take the form
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