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a b s t r a c t

Various theoretical treatments and models for nonlocal diffusion are briefly reviewed and discussed. The
nonlocal effects arise in far from equilibrium processes, which involve extremely fast heat and mass
transfer at very small time and length scales. With only diffusive dynamics, the nonlocal models result
in a set of transfer equations of parabolic type with an infinite velocity of diffusive disturbances. With
the wavelike dynamics, the models lead to a set of transfer equations of hyperbolic type with a finite
velocity of diffusive disturbances. Rapid solidification of binary alloys has been used to illustrate the
influence of the nonlocal diffusion effects on solute partitioning at the phase interface.

� 2013 Published by Elsevier Ltd.

1. Introduction

The nonlocal effects in heat-mass transfer [1–9] arise in a wide
variety of modern practical applications in materials sciences, such
as metallic nanowires [1], rapid solidification of binary alloys
[10–18], colloidal solidification [19], high-power laser melting
[7,20], and frontal polymerization [21]. These types of problems
are also of great interest for their purely mathematical content.
The classical diffusion theory is based on Fick law, which suggests
that the diffusion flux J at a space point x and a time moment t de-
pends on the concentration gradient rC at the same space–time
point, i.e. J(x, t) = �DrC(x, t), where D is the diffusion coefficient,
and C is the concentration. But strictly speaking mass (heat) trans-
port is an inherently nonlocal phenomenon. The heat-mass flux at
a point depends on the history of the heat-mass carriers reaching
the point at time t and the carriers arrive at the point in space hav-
ing brought the energy or mass from other points. Thus there are
essentially two important non-Fickian effects – the one related to
the time lag between the flux and corresponding gradient (it can
be called time non-local effect), the other is the space non-local
effect, which takes into account that the carriers come to a point
from another distant point. In many practically important cases,
which occur not very far from equilibrium, Fick law gives an ade-
quate description of diffusion phenomena. But since industrial
applications strive towards higher speed, power, and miniaturiza-
tion, the transport processes occur under conditions far from local

equilibrium and nonlocal effects should be taken into account. This
paper concerns the non-local diffusion but the principal conclu-
sions will be also valid for heat conduction. In Section 2 we briefly
review and discuss the main non-local diffusion models. Particular
emphasis is given to the space nonlocal effects, which are ruled by
the ratio of the mean-free path l to the characteristic length of the
system h, that is, the so-called Knudsen number. We have tried to
represent the models in the relatively simple analytical form,
which would allow one to use them for modeling particular pro-
cesses far from equilibrium conditions. Section 3 describes the
non-local diffusion effects during steady-state regimes of moving
phase interface. The regimes arise in many important applications
such as rapid solidification of binary alloys, colloidal solidification,
frontal polymerization, combustion waves, etc. In Section 4 we use
the results obtained in Section 3 to calculate the solute segregation
coefficient at the phase interface, which plays the most crucial role
in modeling rapid phase transformation and strongly depends on
the non-local diffusion effects. We end the paper with conclusions
in Section 5.

2. Non-local diffusion models

2.1. Phenomenological illustration

The simplest phenomenological illustration, which demon-
strates the space–time non-local effects, can be based on the pro-
cedure described in many text-books (see, for example, [22]).
Diffusion flux is a number of molecules, which move through a

0017-9310/$ - see front matter � 2013 Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.12.048

⇑ Tel.: +7 903 247 81 52; fax: +7 496 522 35 07.
E-mail address: sobolev@icp.ac.ru

International Journal of Heat and Mass Transfer 71 (2014) 295–302

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2013.12.048&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.12.048
mailto:sobolev@icp.ac.ru
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.12.048
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


plain of unit area per unit time. The net flux is due to the difference
between the flow from one side of the plane and the flow from the
other side of the plain. The flux from left side of the plain is propor-
tional to C(x � l)vdt/6 and the flux from right side of the plain is
proportional to C(x + l)vdt/6, where C is the particle concentration,
v is the particle mean velocity. The net flux is proportional to the
difference between the fluxes. Moreover we should take into ac-
count that a particle comes to a point x at a time moment t + s from
a point (x � l) or (x + l) where it was at a time moment t. It implies
that there is a time lag s between the diffusion flux and the particle
concentration (and its derivatives), where s is relaxation time to lo-
cal equilibrium (for gases it is of the ordered of the mean collision
time). In a one dimensional case one can obtain

Jðt þ s; xÞ ¼ 1
2
ðCðt; x� lÞ � Cðt; xþ lÞÞv

Now each term of this equation may be expanded in a Taylor series
with two small parameters l and s

X
n¼0

sn

n!

@nJ
@tn ¼ �v

X
k¼0

l2kþ1

ð2kþ 1Þ!
@2kþ1C
@x2kþ1 ð1Þ

The right and the left hand side of Eq. (1) contain the terms of Taylor
series with different small parameters l and s. In the zero order
approximation n = k = 0 this expansion yields the classical Fick
law [22]

J ¼ �D
@C
@x

ð2Þ

where D = vl = l2/s is the diffusion coefficient. In combination with
the mass conservation law oC/ot = �oJ/ox, Fick law results in the
classical diffusion equation of parabolic type

@C
@t
¼ D

@2C
@x2 ð3Þ

But this procedure arises two questions: (i) why we should limit
ourselves with the zero order approximation n = k = 0 in expansion
(1); and (ii) how we should compare terms with different small
parameters l and s if we consider higher order approximations of
expansions (1)? The answer to the first question is that the zero or-
der approximation to Eq. (1) is valid only for relatively slow pro-
cesses when s� t0 and l� h, where t0 is the characteristic time
of the process under consideration. In this case the non-local effects
are small and the classical local equilibrium approach with Eqs. (2)
and (3) can be used. If s / t0 and /or l / h, then the nonlocal effects
play significant role and higher order approximations of Eq. (1)
should be used. In order to answer to the second question we
should introduce the truncation procedure, which is based on the
relationship between the small parameters s and l at s ? 0 and
l ? 0. With only diffusive dynamics, when the characteristic speed
of the process under consideration v0 = h/t0 is much less than the ra-
tio l/s = v, the small parameters s and l are connected by the diffu-
sion-like limiting condition [3,6]

lim
l!0;s!0

l2
=s ¼ D ¼ const ð4Þ

The first order approximation to Eq. (1) with allowance for Eq. (4)
gives

J þ s @J
@t
¼ �D

@C
@x
� D

l2

3
@3C
@x3 ð5Þ

Eq. (5) is nonlocal both in time and space due to additional time and
space derivatives in comparison with Fick law (2). The need for the
space nonlocal term (the last term in Eq. (5)) depends on whether
o2C/ox2 varies rapidly on the distance scale of the mean-free path

l (or correlation length). Combining Eq. (5) with the mass conserva-
tion law we obtain corresponding diffusion equation in the form

@C
@t
þ s @

2C
@t2 ¼ D

@2C
@x2 þ D

l2

3
@4C
@x4 ð6Þ

This equation is nonlocal both in time and space due to the addi-
tional derivatives with parameters s and l in comparison with local
Eq. (3). Eq. (6), as well as the classical diffusion Eq. (3), is of para-
bolic type. Taking into account higher order approximations in a
Taylor series expansion with allowance for the same limiting condi-
tion (4) one obtains a hierarchy of higher order partial differential
equations of parabolic type [3,6].

With the wavelike dynamics, when v0 / v, the limiting relation
for the small parameters s and l corresponds to a finite value of
v = l/s [3,6], i.e.

lim
l!0;s!0

l=s ¼ v <1 ð7Þ

In this case Eq. (1) results in

J þ s @J
@t
¼ � sv2

3
@C
@x

ð8Þ

where sv2 = D. This equation is similar to the evolution equation for
heat flux known as Cattaneo-type equation [2–4]. Combining Eq. (8)
with the mass conservation law, one can obtain

@C
@t
þ s @

2C
@t2 ¼ D

@2C
@x2 ð9Þ

This equation, as well as higher order approximations with limiting
condition (7), is of hyperbolic type. It contrasts to the classical dif-
fusion Eq. (3) and higher order approximations with limiting condi-
tion (4), which are of parabolic type. Note that from the
mathematical point of view equations of parabolic type predict an
infinite velocity of diffusive disturbances because the discontinuity
imposed by the sudden jump of concentration at the boundary of a
semi-infinite system is felt immediately everywhere at distant
points. This is inconsistent with the principle of causality and
experimental data. The conceptual problem is overcome by the
hyperbolic diffusion equations (Eq. (9) or higher order approxima-
tions with limiting condition (7)), which, in contrast to the parabolic
equations, predict that the discontinuity imposed by the sudden
jump of concentration propagates at a finite velocity VD. The diffu-
sive velocity corresponding to Eq. (9) is defined as VD = (D/s)1/2 = v.
This contradiction arises from the difference between the limiting
conditions (4) and (7). At the finite value of the diffusion coefficient
D = l2/s (see Eq. (4)), the diffusive velocity VD = l/s can be expressed
as VD = D/l, which implies that VD ?1 at s ? 0 and l ? 0. The lim-
iting condition (7) keeps a finite value of diffusive velocity VD = l/s
at l ? 0 and s ? 0, which corresponds to the hyperbolic type of par-
tial differential equations. However, in spite of this inconsistency
with the principle of causality, the diffusion equations of parabolic
type can be successfully used to study relatively slow processes
with characteristic velocity vo = h/t0� VD. At high characteristic
velocities vo / VD, the diffusion equation of hyperbolic type should
be used. Eq. (9) is similar to hyperbolic heat conduction equation,
which is discussed in more details in the following references
[2–6,20]. The hyperbolic diffusion Eq. (9) has been successfully used
to describe the transition to diffusionless regimes in rapid solidifica-
tion of metal alloys [12–15] and colloidal crystallization [19].

2.2. Extended irreversible thermodynamics (EIT)

In order to describe the local nonequilibrium processes the ex-
tended irreversible thermodynamics [1,2] includes the higher-order
fluxes in a set of independent variables. The simplest evolution
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