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a b s t r a c t

This paper proposes the use of the finite pointset method for the numerical solution of two-dimensional
transient heat conduction problems. The strong formulation of the parabolic partial differential equation
is directly used instead of the corresponding weak form. Moreover, a numerical comparison between the
finite pointset method and the corresponding analytical solutions is reported.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

During the past 30 years different type of meshless methods for
solving partial differential equations have been developed with the
objective of eliminating part of the difficulties arising when mesh-
based methods are used. The starting point of these methods was
the smooth particle hydrodynamics (SPH) method proposed by
Lucy [1] and Gingold and Monaghan [2] in the area of astrophysics
and applied later in other research fields. For a good overview on
meshless methods we refer to [3] and references therein.

In the field of heat transfer by conduction different meshless
methods have been already applied. Among these scientific works
some of the recent publications, to the authors knowledge, are the
following works: Liu et al. [4] uses a meshless weighted least
squares method for heat conduction. Chen et al. [5] applied a cor-
rective SPH method to solve unsteady heat conduction problems.
Cheng and Liew [6,7] applied the reproducing kernel particle meth-
od (RKPM) for two and three-dimensional unsteady heat conduc-
tion problems, respectively. We refer to [7] for a concise and
recent overview on meshless methods on the field of heat conduc-
tion problems.

As an alternative to the solution for the unsteady heat conduc-
tion equation we propose in this work the application of a slightly
different version of the finite point method developed by Oñate [8].
This method is called the finite pointset method (FPM) and to the
authors knowledge this version of the method has been developed

by Kuhnert [9] in the Fraunhofer-Institut für Techno- und
Wirtschaftsmathematik, in Kaiserslautern, Germany, and it has
been already applied in the fields of fluid mechanics [10–13] and
radiative heat transfer problems [14]. Later on, a very close version
of the FPM of Kuhnert has been also developed by Cheng and Liu,
[15] in the field of fluid mechanics. In this work we propose the
application of the finite pointset method of Kuhnert to the field
of heat conduction for unsteady problems being the first time, to
the authors knowledge, that this method is applied in this particu-
lar research field. In order to get some insight on his performance
we compare the numerical solution to some specific problems
whose analytical solutions are known.

The structure of the paper is as follows: Sections 2 shortly
describe the basic ideas behind FPM. Section 3 presents some
issues regarding the numerical implementation of FPM. The test
examples are presented in Section 4 with the corresponding
results. Finally some conclusions are given in last section.

2. The FPM method

In this section we describe the main ideas of the FPM method
proposed by [9]. The FPM is a member of the family of the least
square (LS) methods and it is closely related to the finite point
method by Oñate et al. [8,16]. Although they are very similar they
are not identical. The main difference is that finite point method of
Oñate uses polynomial basis and the FPM method uses Taylor ser-
ies which allow to compute, by an LS approach, the function and its
derivatives values that naturally appear as unknown coefficients in
the series.
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The method is based on the so-called moving least squares pro-
cedure which is shortly described next, following [14]:

Let X be a given domain with boundary @X and suppose that the
set of points x1;x2; . . . ;xn is distributed with corresponding func-
tion values f ðx1Þ; f ðx2Þ; . . . ; f ðxnÞ. The problem is to find an approx-
imate value of f at some arbitrary location f ðxÞ. Thus, the following
procedure can be applied:

Define the approximation to f ðxÞ as

~f ðxÞ ¼
Xm

k¼1

pkðxÞbkðxÞ ¼ ptðxÞbðxÞ ð1Þ

whose local version reads

~f ðx; �xÞ ¼
Xm

k¼1

pkð�xÞbkðxÞ ¼ ptð�xÞbðxÞ ð2Þ

where pkðxÞ denotes a set of linear independent functions, in partic-
ular, they can be linear monomials.

Now, minimize the quadratic form

J ¼
Xn

j¼1

wðx; xjÞe2
j ð3Þ

¼
Xn

j¼1

wðx; xjÞ
Xm

k¼1

pkðxjÞbkðxÞ � f ðxjÞ
 !2

ð4Þ

in order to get the optimal coefficients

b ¼ A�1Bf ¼ ðBPÞ�1ðPtWÞf ð5Þ

where

P ¼

p1ðx1Þ p2ðx1Þ � � � pmðx1Þ
p1ðx2Þ p2ðx2Þ � � � pmðx2Þ

..

. ..
. . .

. ..
.

p1ðxnp Þ p2ðxnp Þ � � � pmðxnp Þ

2
66664

3
77775 ð6Þ

W ¼

wðx;x1Þ 0 � � � 0
0 wðx; x2Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � wðx;xnp Þ

2
66664

3
77775 ð7Þ

f ¼ ½f ðx1Þ; f ðx2Þ; . . . ; f ðxnp Þ
t ¼ ½f1; f2; . . . ; fnp �

t
; ð8Þ

bðxÞ ¼ ½b1ðxÞ; b2ðxÞ; . . . ; bmðxÞ�t ð9Þ

np denotes the number of neighbor points xj of x and wðx;xjÞ
denotes a weight function with compact support. Moreover, differ-
ent weight functions have been used in the literature and the most
common functions are the cubic spline and the Gaussian functions,
being the last one chosen to be used in this paper.

Once b is known the function approximation at point x reads

~f ðxÞ ¼
Xm

k¼1

pkðxÞbkðxÞ ¼ ptðxÞAðxÞ�1BðxÞf ¼ UðxÞf ð10Þ

If the base functions piðxÞ are defined as follows:

pt ¼ ½1;Dxj;Dyj; . . .�; ð11Þ

where Dxj ¼ xj � x and Dyj ¼ yj � y for j ¼ 1; . . . ;np, the following
equivalent representation is obtained

~f ðxÞ ’
Xm

k¼1

pkðxÞbkðxÞ ¼ f ðxjÞ þ rf ðxjÞ � Dxj þ � � � ð12Þ

which implies that under this representation the new vector of
unknown coefficients becomes

bðxÞ ¼ ½f ðxÞ; @xf ðxÞ; @yf ðxÞ; . . .�t ð13Þ

In this way we automatically get the values of the function and its
derivatives at points x. We refer to [10] for a more explicit presen-
tation of the FPM method applied to the Poisson equation.

3. Numerical implementation

Along this section we will describe some issues regarding the
numerical implementation for FPM applied to two dimensional
problems of the following form

qc
@T
@t
� kDT ¼ _Q ; in X ð14Þ

with the following boundary conditions

T ¼ T on C1 ð15Þ
n � krT ¼ �q on C2 ð16Þ
n � krT ¼ hcðT � T1Þ on C3 ð17Þ

and initial condition

Tjt¼0 ¼ T0 ð18Þ

where X denotes de domain of interest, @X ¼ C1 [ C2 [ C3 is the
boundary. T; _Q ; k; c;q and n denotes the temperature, source of heat
generation per unit volume, thermal conductivity, specific heat of
the material, density of the material and the unit outward normal
to the boundary, respectively.

3.1. FPM discretization

3.1.1. FPM form for the heat equation
In the FPM representation for the unsteady two dimensional

heat equation, the matrices we need to compute by each particle
in X take the following form:

If xi 2 X, then

P ¼

1 Dx1 Dy1
1
2 ðDx1Þ2 Dx1Dy1

1
2 ðDy1Þ

2

1 Dx2 Dy2
1
2 ðDy2Þ

2 Dx2Dy2
1
2 ðDy2Þ

2

..

. ..
. ..

. ..
. ..

. ..
.

1 Dxn Dyn
1
2 ðDynÞ

2 DxnDyn
1
2 ðDynÞ

2

2 0 0 �Dt 0 �Dt

0
BBBBBBBB@

1
CCCCCCCCA

ð19Þ

W ¼

wðx� x1Þ 0 � � � 0
0 wðx� x2Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � wðx� xnÞ
0 0 � � � 1

2
66666664

3
77777775

ð20Þ

f¼ Ts;lþ1ðx1Þ;Ts;lþ1ðx2Þ; . . . ;Ts;lþ1ðxnp Þ;2Dt _Q þ2Ts;lðxÞþDtDTs;l
� �t

ð21Þ

bðxÞ¼ Ts;lþ1ðxÞ;@xTs;lþ1ðxÞ;@yTs;lþ1ðxÞ;@xxTs;lþ1ðxÞ;@xyTs;lþ1ðxÞ;@yyTs;lþ1ðxÞ
� �t

ð22Þ

where s and l denotes the iteration and time counters, respectively.
Moreover, since the FPM method is an iterative method over each
particle in X, therefore the stopping criteria used in the imple-
mented algorithm is a relative error of the following formPnp

i¼1jT
sþ1;lðxiÞ � Ts;lðxiÞjPnp

i¼1jT
sþ1;lðxiÞj

< e ð23Þ

were the solution at each time step is obtained once we reach con-
vergence, i.e., Ts;lþ1ðxiÞ ¼ Tsþ1ðxiÞ as s!1 and this holds for
i ¼ 1; . . . ; np.

E.O. Reséndiz-Flores, I.D. García-Calvillo / International Journal of Heat and Mass Transfer 71 (2014) 720–723 721



Download English Version:

https://daneshyari.com/en/article/7057783

Download Persian Version:

https://daneshyari.com/article/7057783

Daneshyari.com

https://daneshyari.com/en/article/7057783
https://daneshyari.com/article/7057783
https://daneshyari.com

