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a b s t r a c t

In this paper, the large-eddy simulation is introduced into the lattice Boltzmann method to study convec-
tive heat transfer in turbulent flows. The simulations include a closed lid-driven cavity flow and a back-
ward-facing step flow in both laminar and turbulent regions. The results show that by combining with
large-eddy simulations, the lattice Boltzmann method can simulate turbulent flow phenomena well and
give good agreement with other experimental and numerical results, while the traditional lattice Boltz-
mann method fails. Quaternary vortices of the turbulent cavity flows are captured in the simulations as
well as the transient vortices of backward-facing step flows. By calculating the distribution of skin-friction
coefficients and Nusselt number on the lower wall, the drag and heat transfer efficiency of backward-fac-
ing step flows are found to be influenced by the vortices generated near walls significantly, no matter the
flow is laminar or turbulent. For laminar cases, the flow phenomena are also greatly affected by the Rey-
nolds number. But in turbulence, the flow field is fully perturbed and chaotic, so that the transport phe-
nomena are approximately independent of the Reynolds number.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) [1,2] has been developed
over twenty years and achieved considerable success in many
problems. On the basis of the microscopic nature, the LBM simu-
lates fluid flows by performing a bottom-up scheme, which treats
the fluid particles on a statistical level. Simplified kinetic models
incorporating essential physics of microscopic processes are con-
structed in the LBM. Fluid flows are tracked through the evolution
of one-particle phase space distribution functions and associated
macroscopic averaged properties. Based on the gas kinetic theo-
rem, LBM simulations include two steps, namely particle distribu-
tion ‘‘collisions’’ on lattice nodes and stream ‘‘propagations’’ from
one node to all neighbors along the lattice directions. After stream-
ing, new distribution components on lattice nodes are obtained
from neighbors in a new time step and cause new local and
macroscopic properties. Essentially, this is different from other
traditional CFD methods, which analyze flow fields by solving mac-
roscopic variables in the Navier–Stokes equations.

As a promising method of computational fluid dynamics (CFD),
many difficult problems in traditional CFD can be solved by LBM,
e.g. multiphase fluid flows [3], heat transfer [4], microfluidics [5],
fluid flows through porous media [6] and fractal geometry [7]. In

nature and engineering, turbulent flows are very common. But
they are difficult to be solved by theoretical or numerical schemes
because of the complicated and irregular characteristics. Therefore,
to simulate turbulent flows by the LBM is an attractive topic [8].
Chen and Doolen [9] summarized the lattice Boltzmann method
for fluid flows, which included the development of LBM for simu-
lating turbulence. The typical methods for simulating turbulence
are direct numerical simulation (DNS), Reynolds average numerical
simulation (RANS), and large-eddy simulation (LES), which was
proposed first by Deardoff [10]. The base ideal of LES is to decom-
pose the turbulent flow field into large and small scale parts. The
large scale part is solved by Navier–Stokes equations, while the
small scale part is solved by sub-grid scale (SGS) model.

The SGS model used in this study is based on the well-known
Smagorinsky model [11], which includes vortex-viscous and vor-
tex-diffusive forms. Hou et al. [12] used LBM coupled with the
standard Smagorinsky model and introduced the eddy relaxation
time to simulate two-dimensional driven cavity flow. The Reynolds
number was considered up to 100,000. Chen [13] also used a large-
eddy-based LBM to simulate turbulent driven cavity flow. This
model is corresponding to vorticity-stream function equations
and hence has better numerical stability than the traditional
LBM, which solves mass density, pressure and velocity for
Navier–Stokes equations. Guan and Wu [14] introduced two sub-
grid models, namely the dynamics SGS model and the dynamical
system SGS model, to the lattice Boltzmann method for solving
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three dimensional high Re turbulent driven cavity flows. Results
were compared with those obtained from the Smagorinsky model
and direct numerical simulation for the same cases.

Although the large-eddy simulation was proposed and applying
to study turbulence for decades, the combination of the lattice
Boltzmann method and LES were extensively adopted only in re-
cent years. To our knowledge, there are a few studies concerning
solving convection heat transfer in turbulence, and most of these
studies were focused on the topic of a closed cavity [15–20]. Wu
et al. [21] simulated the turbulent heat transfer in a channel flow.
Although their work included three dimensional effects, the chan-
nel walls were two straight plates. The objective of this study is to
apply the LBM by combining with the LES to simulate turbulence.
The simulations include the lid-driven cavity flow and the back-
ward-facing step flow. In addition, the turbulent heat transfer phe-
nomena in the backward-facing step flow are simulated and
discussed.

For the backward-facing step flow, the separation and reattach-
ment phenomena produce the recirculation region downstream
the step. Armaly et al. [22] used the laser-Doppler measurements
to observe velocity distribution and reattachment length of a single
backward-facing step in a channel. The numerical method was also
applied to simulate this problem. The discussions were presented
for laminar, transitional and turbulent flow of air in a Reynolds
number range of 70 < Re < 8,000. The results indicated that the
flow can be considered as laminar for Re < 1,200 and turbulent
for Re > 6,600. For the range of 1,200 < Re < 6,600, the flow phe-
nomena are transitional and present noticeable three dimensional
effects. Since the present simulations are considered two dimen-
sional cases, this work focuses on the laminar and turbulent
regions of the backward-facing step flow only. The reattachment
length for the laminar region is also compared with numerical
results of Erturk [23] and Ma et al. [24]. For the turbulent region,
Jongebloed’s numerical results [25] by FULENT with RANS method
for turbulence are adopted for validation. Otherwise, the drag
effects and heat transfer efficiency are evaluated by calculating
the skin-friction coefficients and the Nusselt number, respectively.
Finally, the turbulent convective heat transfer phenomena of the
backward-facing step flow are discussed in this paper.

2. Numerical methods

2.1. Hydrodynamic model for LBM

The Boltzmann equation with a linearized collision operator can
be written as follows:

@f
@t
þ~v � @f

@~x
¼ 1

sf
ðf eq � f Þ; ð1Þ

where ~v is microscopic velocity. The relaxation term on the right
side is the simplified collision operator, namely the Bhatnagar–
Gross–Krook (BGK) approximation model [26], with the relaxation
time sf for the density distribution function f towards the local equi-
librium. The equilibrium distribution function feq is related to the
Maxwell–Boltzmann equilibrium distribution. By applying a lattice
model of a discrete velocity set, the Boltzmann equation with BGK
model (LBGK) can be transformed into the discrete form of

@fa
@t
þ~ea � rfa ¼ �

1
sf
ðfa � f eq

a Þ; ð2Þ

where fað~x; tÞ and ~ea are the component of density distribution
function and lattice velocity vector in the a direction of the lattice
model. For evolution of distribution function, this discrete lattice
Boltzmann equation can be discretized in the time and space
domain as

fað~xþ~eaDt; t þ DtÞ � fað~x; tÞ ¼ �
1
sf
½fað~x; tÞ � f eq

a ð~x; tÞ�: ð3Þ

The LBGK model can be decomposed as two steps repeated for each
time step, namely stream and collision steps. These steps are per-
formed individually in different lattice directions according to the
specified lattice model.

In the LBM simulation, the DnQb lattice model proposed by
Qian et al. [27] of n dimension and b lattice velocities are often
used. This study adopts the convenient D2Q9 lattice model [4,7]
for both the hydrodynamic and thermal analysis of flows. The dis-
crete velocity set of D2Q9 model is shown in Fig. 1. The velocity
distribution are defined as

~ea ¼
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;a ¼ 5—8
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>: ð4Þ

where c ¼ Dx=Dt ¼ Dy=Dt is the lattice streaming speed defined by
time step Dt and the grid spacing Dx and Dy. The density equilib-
rium distribution function is given by

f eq
a ¼ qxa 1þ

~ea �~u
c2

s
þ
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� u2

2c2
s

" #
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where xa ¼ 4
9 for a = 0, xa ¼ 1

9 for a = 1–4, and xa ¼ 1
36 for a = 5–8.

~uð~x; tÞ is the velocity vector at the lattice node of position ~x. The
macroscopic density and velocity are calculated as

q ¼
X

a
fa; ð6Þ

~u ¼ 1
q
X

a
fa~ea: ð7Þ

By the Chapman–Enskog expansion [2], the LBGK model can be
recovered to the macroscopic equations as follows

@q
@t
þr � ðq~uÞ ¼ 0; ð8Þ

@

@t
q~uð Þ þ r � q~u~uð Þ ¼ �rp
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s
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where p ¼ qc2
s is the pressure related to the lattice sound speed,

cs ¼ c=
ffiffiffi
3
p

. The kinematic viscosity is

m ¼ c2
s sf �

1
2

	 

Dt: ð10Þ

Fig. 1. D2Q9 model for LBM simulation.
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