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a b s t r a c t

Present work is concerned with the transient solution of a half-space problem in the context of fractional
order micropolar thermo-viscoelasticity involving two temperatures whose surface is acted upon by a
uniformly distributed thermal source. Medium is assumed initially quiescent. The formulation is applied
to the fractional generalization of the Lord–Shulman theory with microstructure effects and the non-
dimensional equations are handled by employing an analytical–numerical technique based on Laplace
and Fourier transforms. The numerical estimates of the displacement, stresses and temperatures are com-
puted for magnesium crystal like material and corresponding graphs are plotted to illustrate and com-
pare theoretical results. All the fields are found to be significantly affected by the fractional parameter,
viscosity and two temperature parameter. The phenomenon of finite speed of propagation is observed
graphically for each field. Some particular cases have also been inferred from the present study.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Under the assumption of continuum hypothesis of an elastic
body, the classical theory of elasticity is based on linear stress–
strain law (Hooke’s law). In this theory, the transmission of load
across a surface element of an elastic body is described by a force
stress (force per unit area) and the motion is characterized by
translational degrees of freedom only. For materials possessing
granular structure, it is found that the classical theory of elasticity
is inadequate to represent complete deformation. Certain discrep-
ancies are observed between the results obtained experimentally
and theoretically, particularly, in dynamical problems involving
elastic vibrations of high frequencies and short wavelengths, i.e.,
vibrations due to the generation of ultrasonic waves. The reason
for these discrepancies lies in the microstructure of the material,
which exerts special influence at high frequencies and short wave-
lengths [1]. This influence of microstructure results in the develop-
ment of new type of waves, not found in the classical theory of
elasticity. Metals, polymers, composites, soils, rocks, concrete are
typical media with microstructures. More generally, most of the
natural and manmade materials including engineering, geological
and biological media possess a microstructure.

Cosserat and Cosserat [2] were the first who rendered impor-
tance to the microstructure of a granular body and incorporated
a local rotation of points in addition to the translation assumed

in classical theory of elasticity. Consequently, there exists couple
stress (a torque per unit area) in addition to the force stress. This
theory is known as ‘Cosserat theory’ after their names or the theory
of elasticity with couple stress. This theory was in dormant for so
many years and did not get sufficient attention. In the 1960s, Erin-
gen and Suhubi [3,4] and Eringen [5] gave modern formulations of
Cosserat medium equations, which became known as the equa-
tions of the micropolar theory of elasticity or the theory of asym-
metric elasticity. Within such a theory, solids can undergo
macro-deformations and micro-rotations. The motion in this kind
of solids is completely characterized by the displacement vector
~uð~X; tÞ and the micro-rotation vector ~/ð~X; tÞ while in the case of
classical elasticity, the motion is characterized by the displacement
vector only. A historical development of the theory of micropolar
elasticity is given in a recent monograph of Eringen [6]. This theory
is expected to find applications in the treatment of mechanics of
granular materials, composite fibrous materials and particularly
microcracks and microfractures.

Recent years have seen an evergrowing interest in the investi-
gation of dynamical interaction between thermal and mechanical
fields in solids due to their manifold applications in various
branches of engineering, science and technology. While in service,
structural elements are frequently subjected to not only force loads
but also non-uniform heating causing thermal stresses. These
stresses themselves or in combination with mechanical stresses
due to external loads may cause the material to fracture. Therefore,
to perform a complete strength analysis of structures, it is neces-
sary to know the magnitude and distribution of thermal stresses.
In this connection, issues associated with the determination of
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temperature fields and thermal stresses are of importance and
draw the attention of experts of different professions. Keeping
the above applications in view, the micropolar elasticity theory
was further extended to include the thermal effects by Nowacki
[7–9] and Eringen [10]. One can refer to Dhaliwal and Singh [11]
for a review on the micropolar thermoelasticity and a historical
survey of the subject as well as to Eringen and Kafadar [12] in
the continuum physics series, in which the general theory of
micromorphic media has been summed.

There has been very much written in recent years concerning
the problem of propagation of thermal waves at finite speed. The
articles of Dreyer and Struchtrup [13] and Caviglia et al. [14] pro-
vide an extensive survey of work on experiments involving the
propagation of heat as a thermal wave. They reported instances
where the phenomenon of second sound has been observed in sev-
eral kinds of materials. Extensive reviews on the second sound the-
ories can be found in the works of Chandrasekharaiah [15,16]. A
generalized theory of linear micropolar thermoelasticity that ad-
mits the possibility of ‘‘second sound’’ effects was established in
[17]. Using the Green and Lindsay theory [18], Dost and Tabarrok
[19] propounded another new model of generalized micropolar
thermoelasticity that permits the propagation of thermal waves
at a finite speed. Chandrasekharaiah [20,21] obtained the equa-
tions for a generalization of micropolar thermoelasticity equations,
which is called the heat flux dependent micropolar thermoelastic-
ity and proved variational and reciprocal principles for his equa-
tions. Ciarletta [22] used the procedure proposed by Green and
Naghdi [23] to derive a new linear theory of micropolar thermo-
elasticity. In this theory, in contrast to the theories developed in
[17,19,20], the heat flow does not involve energy dissipation. Sher-
ief et al. [24] proposed the generalized equations for the linear the-
ory of micropolar thermoelasticity based on Lord–Shulman theory
[25]. A uniqueness theorem is also provided in the same article. As
an illustrative example, they have solved a half-space problem
using Laplace and Hankel transforms whose boundary is rigidly
fixed and subjected to an axisymmetric thermal shock. Several
researchers in past including Kumar and his co-workers [26–28],
Othman and Singh [29], Zakaria [30] among several others have
studied many interesting problems based on micropolar general-
ized thermoelasticity theories.

Effect of internal friction on the propagation of plane waves in
an elastic medium may be attributed to the fact that dissipation
accompanies vibrations in solid media due to the conversion of
elastic energy to heat energy. Several mathematical models have
been used by authors [31,32] to accommodate the energy

dissipation in vibrating solids where it is observed that internal
friction produces attenuation and dispersion; hence, the effect of
the viscoelastic nature of material medium in the process of wave
propagation cannot be neglected. Also with the rapid development
of polymer science and plastic industry as well as wide use of
materials under high temperature in modern technology and
application of biology and geology in engineering, the theoretical
study and applications in viscoelastic materials have become an
important task for solid mechanics. Further, as pointed out by
Freudenthal [33], most of the solids, when subjected to dynamic
loading, exhibit viscous effects. Keeping these facts in mind, sev-
eral problems on wave propagation in a linear viscoelastic solid
have been explored by many research workers. One can refer to
Ilioushin and Pobedria [34] for a formulation of a mathematical
theory of thermal viscoelasticity and the solutions of some bound-
ary value problems.

Gurtin and Williams [35,36] have suggested that there are no
a priori grounds to assume that the second law of thermodynam-
ics for continuous bodies involve only a single temperature, i.e., it
is more logical to assume a second law in which the entropy con-
tribution due to heat conduction is governed by one temperature,
that of the heat supply by another. Chen and Gurtin [37] and
Chen et al. [38,39] have formulated a theory of heat conduction
in deformable bodies which depends on two distinct tempera-
tures – the conductive temperature / and the thermodynamical
temperature h. The conductive temperature is due to the thermal
processes and the heat exchange with the external world and the
thermodynamical temperature is due to the mechanical processes
inherent between the particles of elastic materials. Chen et al.
[38] have pointed out that the difference between these two tem-
peratures is proportional to heat supply and these temperatures
become equal for time-independent situation in the absence of
heat supply. However, for time-dependant cases the two temper-
atures are in general different, regardless of the heat supply. The
key element that sets the two-temperature thermoelasticity apart
from the classical theory of thermoelasticity is the material
parameter a ðP 0Þ, called the temperature discrepancy. Specifi-
cally if a = 0, then / = h and the field equations of two-tempera-
ture thermoelasticity reduce to those of classical theory of
thermoelasticity. Youssef [40] extended this theory in the frame
of generalized theory of heat conduction by introducing thermal
relaxation parameters in the constitutive relations and proposed
a two-temperature theory of generalized thermoelasticity.
Uniqueness of the solution for this theory has also been derived
by Youssef in the same article.

Notations

rij components of force stress tensor
mij components of couple stress tensor
~/ microrotation vector
k� ke 1þ a0

@
@t

� �
l⁄ le 1þ a1

@
@t

� �
b�1 b1e 1þ b1

@
@t

� �
b1e ð3ke þ 2le þ kÞat

b1 ð3kea0 þ 2lea1Þ at
b1e

h = T � T0 thermodynamical temperature
/ = / � T0 conductive temperature
ke; le Lame’s constants
a0,a1 viscoelastic relaxation times
a,b,c,k micropolar material constants
at coefficient of linear thermal expansion

a two-temperature parameter
j microinertia
T absolute temperature
T0 temperature of the medium in its natural state as-

sumed to be |h/T0|� 1
ui components of the displacement vector
q density of the medium
eij components of the strain tensor
e cubical dilatation
cE specific heat at constant strain
K⁄ thermal conductivity
s0 thermal relaxation time
C Gamma function
m fractional order parameter such that 0 < m 6 1
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