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a b s t r a c t

’It is well-known that solidification front of a supercooled liquid is unstable; consequently, this instability
leads to the appearance of an array of dendrites of sub-micron diameter. The shape and the velocity of the
dendrite propagation are determined by the thermodynamic properties of the liquid and solid phases,
including interfacial energy as well as the initial temperatures of both. Accordingly, the numerical sim-
ulation of solidification process is a rather challenging problem which requires an accurate prediction of
high temperature gradients near the moving solidification front. In this study a relevant level set formu-
lation has been developed enabling correct determination of the position and the curvature of the liquid/
solid interface. At this interface a Dirichlet boundary condition for the temperature field is imposed by
applying a ghost-face method. For the purpose of updating the level set function and optimizing comput-
ing time a narrow-band around the interface is introduced. Within this band, whose width is temporally
adjusted to the maximum curvature of the interface, the normal-to-interface velocity is appropriately
expanded. The computational model is firstly validated along with the analytical solution of stable freez-
ing. The tip velocity of dendritic patterns (pertinent to unstable freezing) is investigated by performing
two-dimensional simulations. The computational results exhibit excellent qualitative and quantitative
agreement with the marginal stability theory as well as with the available experiments in the heat-dif-
fusion-dominated region.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Several influencing factors are involved simultaneously in the
process of a phase change of pure water: heat transfer, absorption
(if a melting process would take place) or release (pertinent to freez-
ing) of latent heat (with possible solute rejection in case of binary
substances), surface effects, changes in thermophysical properties
with the temperature, etc.

The pure water is supercooled if its temperature becomes lower
than the melting point, corresponding to Tm = 273.15 K under atmo-
spheric pressure. This occurs when the energy barrier above which
the atoms start to move into the solid lattice structure, required
for the formation of a crystal, is not entirely exceeded. Such a state
of supercooling is thermodynamically unstable. Correspondingly
the liquid is in a metastable state, implying a weak disturbance
can initiate a rapid and unstable process of the so-called dendritic
solidification. Small perturbations in the initial state can produce

significant changes in relation to the time-dependent solid/liquid
interface. Behavior of such supercooled water drops is rather impor-
tant for cloud microphysics and understanding of aircraft icing [1,2].

The phenomenon of dendritic crystal growth attracted consider-
able attention over the last few years. In nature many cases of spon-
taneous dendritic pattern formation can be found, e.g., in
solidification of metals and crystallization of supercooled solutions.
The most evident case of dendritic pattern formation are snowflakes
which have various types of complex and fascinating shapes. The
underlying physics of crystals has been firstly elaborated by Kepler
in 1611, [3]. This famous essay about the form of snowflakes repre-
sents the first scientific reference to snow crystals. Over three hun-
dred years later, Nakaya [4] has performed a first systematic study
about the snow crystals. In this work the crystal morphology cre-
ated under different environmental conditions has been described.
Over the last decades, a number of theoretical and experimental
works [5–10], has been published dealing with the detailed macro-
scopic dynamics of crystal growth (pertaining to non-equilibrium
patterns). The common approach to crystallization problems de-
pends on the grade of the supercooling, DT (liquid temperature
reduction below its freezing point without solidification), in the
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liquid. At low supercooling (0.06 6DT 6 10 K), the freezing process
can be considered as a Stefan problem (corresponding to a diffusion-
driven growth) [11]. In the case of very low supercooling
(DT < 0.06 K), a deviation from the theory can be observed in the
experiments. This deviation is assumed to be caused by the effect
of natural convection around the crystal promoting its increase in
this supercooling range [12]. On the contrary, in the case of increas-
ing supercooling (DT > 10 K), there is a transition from the diffu-
sional to the kinetics-limited growth. Correspondingly, the rate of
solidification depends on how fast the liquid molecules can be
brought in the proper position, orientation and conformation perti-
nent to the solid phase.

Recently, Shibkov et al. [13–15] have investigated the free
growth of an ice crystal in a supercooled pure water film in a wide
initial supercooling range corresponding to 0.1 < DT0 < 30 K. In [14]
various shapes of ice crystal patterns in the range between low
(DT0 = 0.1 K) and high (DT0 = 14.5 K) supercooling have been ob-
served. Evidently, the shape and the velocity of the solidification
front depends strongly on the initial supercooling in the pure water
film. The shape of dendritic front is determined by the balance be-
tween surface energy criterion and the efficiency of the interface
(region of negligible thickness where solid and liquid phases coex-
ist) in removing heat. Thus, when pure water freezes in the diffu-
sive regime, different morphologies can appear depending on
supercooling and crystalline anisotropy. At higher supercooling,
e.g., at DT0 = 10 K, transition from diffusional growth to kinetics-
limited growth is observed. These experimental results have been
compared with the theory of dendritic growth of Oldfield and Lan-
ger and Müller-Krumbhaar [16–20] exhibiting an excellent agree-
ment within the diffusion-driven growth region. As expected, in
the kinetics-limited growth region a certain deviation from the
theory is observed.

Mathematically, the phenomenon of solidification can be mod-
eled by utilizing a moving boundary [11]. The heat equation is
solved in each phase separately. The temperature fields are cou-
pled through two boundary conditions at the unknown moving
boundary between the solid and the liquid phase. The first bound-
ary condition is the velocity of the interface. It depends on how fast
the latent heat of solidification is removed from the interface,
hence, the velocity can be derived from a heat balance at the inter-
face. The second boundary condition assumes a constant tempera-
ture at the interface corresponding to the melting temperature.
Locally, the melting temperature at the interface will be altered
by an amount depending on the surface tension between the solid
and liquid phases and the local curvature, in line with the Gibbs–
Thomson effect. Another effect to be taken into consideration are
the density changes due to temperature variation. These changes
induce flow resembling the natural convection in the presence of
gravity which affects the heat transfer in the liquid.

The direct solution of the time-dependent Stefan problem repre-
sents a great challenge. An appropriate front tracking method
accounting for the moving solid–liquid interface is required. Over
the last decades, the phase-field models have been successfully ap-
plied for the simulation of dendritic growth. The basic idea behind
phase-field methods is to artificially thicken the interface to an ex-
tent which can be resolved by the numerical mesh. This thickening
procedure is accomplished by introducing the so-called ‘‘order
parameter’’ for each cell, ranging between zero and unity. If the or-
der parameter takes the value of unity the corresponding grid cell
is filled entirely with the liquid phase. In contrast, the zero value
of the order parameter indicates the grid cell comprising completely
the solid phase. The position of the interface coincides with the sur-
face whose order parameter takes the value 0.5. The width of the
artificially thickened interface corresponds to the area within which
the order parameter varies smoothly from zero to unity. The out-
come is a smeared interface over which all governing equations

can be solved taking into account appropriately averaged (i.e.
weighted) material properties. This allows application of the physi-
cal models within such a diffuse interface. By doing so, the compu-
tational difficulties pertinent to the tracking of a sharp interface
are avoided to a great extent. This contributes to the high popularity
of the phase-field methods for simulating dendritic solidification
[21–25]. Although the phase-field modelling approach has been
shown to be very useful in investigating solidification patterns, there
were still some important drawbacks which should be addressed.
The principal drawback is the non-physical representation of the dif-
fuse interface. The width of the interface represents an adjustable
parameter, which may also lead to unphysical interactions. Unless
a field equation solver is developed to enforce the conservation of
energy for a control volume positioned strictly at the interface, the
interfacial velocity will be inaccurately obtained.

The presently adopted level set method is a computational ap-
proach aiming at overcoming the limitations of phase-field models
with respect to the interface surface tracking; here the boundary
movement is tracked implicitly. This method, firstly introduced
by Osher and Sethian [26], describes the spatial distribution of a le-
vel set function, U, within the entire solution domain. The solid–li-
quid interface is represented by the zero-value contour of the level
set function, which is governed by its own advection-type equation
of motion. These equations providing a sharp interface are solved
directly and can be handled in a straightforward manner. Although
the level set methods still did not reach the popularity the phase-
field methods have for studying crystal growth phenomena, they
have been increasingly applied to several problems involving mov-
ing boundaries [27–29] and crystallization [23,30,31] exhibiting
good predictive performance in returning qualitative features of
the dendrites.

In this work, an extended level set method using a ghost-face
algorithm for solving the temperature field is presented. Unlike
the conventional level set method, this extended version converges
to exact solution of the Stefan problem for planar solidification.
Concerning the tip velocity of dendritic growth within the diffu-
sion-driven growth region the results of two-dimensional simula-
tions show excellent qualitative and quantitative agreement with
the experiments of Shibkov [13–15] and the theory of Oldfield
[16] and Langer and Müller-Krumbhaar[17–20]. Hence, the com-
putational model is capable of capturing both stages of crystalliza-
tion: the first rapid, dendritic-like growth (corresponding to the
phenomenon of unstable freezing) and the second planar-shaped
growth stage (associated with the stable freezing process).

2. Theoretical background

The common approach to a freezing problem consists in its con-
sideration as a two-phase Stefan problem. The term ‘‘two-phase’’
refers here to the phases taking an ‘‘active’’ part in the process.
Accordingly, both the liquid and the solid phases are active, i.e.
the heat conservation is solved in both sub-domains. Let us con-
sider a square domain, D, of pure water where at every time step
and at every numerical node the water is either in the liquid
(supercooled) state or in the solid state. Let T(x,t) represents the
temperature of the water. The region where the water appears as
solid is denoted by Xs and the region where the water is a liquid
by Xl. The interface between the solid phase and the liquid phase
is of infinitesimal thickness and is denoted by N.

2.1. Governing equations

As the flow in liquid region is not considered presently, the en-
ergy equation describing time dependent heat conduction in both
regions reduces to:
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