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a b s t r a c t

The analytical solution for the temperature field in an infinite solid medium which surrounds a cylindri-
cal surface, determined by Carlslaw and Jaeger for the case of constant heat flux, is extended to the case of
any time dependent heat flux. Then, with reference to a sinusoidally varying heat flux, the analytical solu-
tion is employed to determine benchmark results for the time evolution of the dimensionless tempera-
ture of the surface. These results are used to check the accuracy of the numerical solutions obtained by
two different commercial codes: the finite-element code COMSOL Multiphysics and the finite-volume
code FLUENT.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

An important transient heat conduction problem is the determi-
nation of the unsteady temperature field produced by a heated or
cooled cylindrical surface surrounded by an infinite solid medium.
An analytical solution of this problem, for the case of uniform and
constant heat flux per unit area, has been presented by Carlslaw
and Jaeger [1], and has been widely used for the design of Borehole
Heat Exchanger (BHE) fields for ground-coupled heat pump sys-
tems. Indeed, the design method for BHE fields recommended by
ASHRAE [2] and developed by Kavanaugh and Rafferty [3] is based
on this solution. In fact, it sketches each BHE as a cylindrical heat
source subjected to a uniform and constant heat flux per unit area,
and considers the superposition of three heat pulses, each with a
constant power, with different durations: 6 h, 1 month and
10 years. This method is still widely used, but recent studies
showed that, if the seasonal heat loads are unbalanced and the ef-
fects of groundwater movement are negligible, large BHE fields can
reach critical conditions after some decades [4,5], so that an anal-
ysis for a period of 10 years may be insufficient.

In the study of the long-term sustainability of BHE fields, time
dependent heat loads must be considered. A time dependent heat
load can be either obtained as a weighted superposition of
constant heat loads displaced in time, or directly sketched by a
suitable function of time. The second choice was performed, for
instance, in Ref. [5], where the long-term performance of infinitely

long BHE lines placed in a ground with negligible groundwater
movement was studied numerically by means of the finite element
software package COMSOL Multiphysics. Heat loads with period of
1 year were considered, varying with time with a sinusoidal law
during each season, with different degrees of compensation of win-
ter heating with summer cooling. The numerical code was vali-
dated in the special case of constant heat load, by comparison
with the analytical solution of Carlslaw and Jaeger [1].

Indeed, an analytical solution for the temperature field around a
cylindrical surface subjected to a uniform but time dependent heat
flux and surrounded by an infinite solid medium would be useful,
to validate the results obtained by means of numerical simulation
codes, but is not directly available in the literature.

Two analytical solutions of the Fourier equation for the temper-
ature field around a cylindrical surface placed in an infinite solid
medium were presented, but both consider the case of a uniform
and constant heat flux per unit area applied to the surface. The first
is the well known solution by Carlslaw and Jaeger [1]; the second,
reported in a book in German [6], is recalled in a more recent paper
in English [7].

An analytical solution of the Cattaneo–Vernotte hyperbolic heat
conduction equation in cylindrical geometry, with the boundary
condition of a time variable heat flux at the inner surface, was
determined by Barletta [8]. However, the author did not present
or discuss the limit of his solution in the case of a vanishing relax-
ation time. Since the problem, especially in the hyperbolic heat
conduction case, is very far from being elementary, the develop-
ment of an independent solution of the Fourier equation, with
the same geometry and boundary conditions, seems useful, to
build a bridge between the simplest case, studied in Refs. [1,6],

0017-9310/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.07.092

⇑ Corresponding author. Tel.: +39 0512093295; fax: +39 0512093296.
E-mail addresses: enzo.zanchini@unibo.it (E. Zanchini), beatrice.pulvirenti@

unibo.it (B. Pulvirenti).

International Journal of Heat and Mass Transfer 66 (2013) 906–910

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2013.07.092&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.07.092
mailto:enzo.zanchini@unibo.it
mailto:beatrice.pulvirenti@ unibo.it
mailto:beatrice.pulvirenti@ unibo.it
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.07.092
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


and the most complex case considered in Ref. [8], and to provide a
cross validation of the available solutions.

In this paper, an analytical solution of the Fourier equation in an
infinite solid medium bounded internally by a cylindrical surface
subjected to any uniform and time-dependent heat flux, is pre-
sented. It is shown that the solution reduces to that determined
by Carlslaw and Jaeger [1] in the special case of constant heat flux,
and coincides with the limit for vanishing relaxation time of the
solution determined by Barletta [8] for hyperbolic heat conduction.
Then, for the special case of a sinusoidally varying heat flux, the
analytical solution is employed to determine a benchmark table
of values of the dimensionless temperature and to check the accu-
racy of numerical solutions obtained by two different commercial
codes.

2. Analytical solution

Let us consider a homogeneous and infinite solid medium,
bounded internally by the cylindrical surface r = r0, i.e., which
occupies the whole region of space r0 6 r < +1. Let us assume that
the thermal conductivity k and the thermal diffusivity a of the
medium are constants and no heat generation is present within
the solid. At the initial instant of time, s = 0, the temperature field
within the solid is uniform, with a value T0, and stationary. For
s > 0, a uniform and time-dependent heat flux per unit area
q(s) = q0F(s) is applied to the solid, at the internal surface r = r0,
where F(s) is a dimensionless function of time. Under these condi-
tions, the temperature field in the solid is axisymmetric, and the
differential equation for heat conduction in a cylindrical coordinate
system can be written as
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with initial and boundary conditions given by
Tðr;0Þ ¼ T0; ð2Þ
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Let us introduce the dimensionless coordinates
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and the dimensionless temperature

hðg; nÞ ¼ k
Tðr; sÞ � T0

q0r0
: ð5Þ

Thus, Eqs. (1)–(3) can be rewritten as
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Eq. (6) can be solved by using the Laplace transform of h(g,n) with
respect to n,

~hðg; sÞ ¼
Z þ1

0
e�snhðg; nÞdn: ð10Þ

In the Laplace transformed domain, Eq. (6) becomes
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with the boundary condition
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The general solution of Eq. (11) is

~hðg; sÞ ¼ c1ðsÞI0ðg
ffiffi
s
p
Þ þ c2ðsÞK0ðg

ffiffi
s
p
Þ; ð13Þ

where c1(s) and c2(s) are arbitrary functions of s, while I0 and K0 are
the modified Bessel functions of the first and second kind, with or-
der 0. Since the dimensionless temperature must be vanishing for
g ?1, the asymptotic properties of Bessel functions imply that
c1(s) = 0. By applying the boundary condition Eq. (12), and the rela-
tion K00(z) = � K1(z), we obtain the following solution of Eq. (11),
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where K1 is the modified Bessel function of the second kind with or-
der 1. On account of the convolution theorem, the inverse Laplace
transform of Eq. (14) has the form
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Z n

0
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where

vðg;uÞ ¼ L�1 Aðg; sÞf g ¼ 1
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The integral in Eq. (16) can be evaluated by considering the closed
path C shown in Fig. 1 asZ cþi1
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Since there is no pole of A(g,s) within the region bounded by C, the
integral on C is zero, on account of Cauchy integral theorem. By
considering the asymptotic expression of Kn;KnðsÞ � e�s=

ffiffiffiffiffiffiffiffiffi
2ps
p

,

Fig. 1. Integration path.
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