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a b s t r a c t

A predictor–corrector method for solving inverse convection problems has been developed and tested
against both numerical and experimental data. The method was applied to the simple convection prob-
lem of a two-dimensional plume in a crossflow. Crossflow velocities up to 1.0 m/s. The plume was gen-
erated by electrically heating a copper plate to a temperature up to 425 K. The method attempts to
predict both the source strength, and the source location, with a self imposed requirement on sampling
and simulation data points. The samples and simulations required are found to be 5 and 2 respectively.
Tests based on simulation alone indicate the methodology has a source strength prediction error of less
than 1%, and less than 6% for source location. Experimental tests bring the overall error up to 5% for
source strength and 10% for source location. This study indicates the potential of the methodology and
demonstrates some of its limitations. The approach can be extended to applied areas such as environ-
mental flows, room fires, and thermal management systems.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse heat transfer problems are often of greater interest to
engineers than the associated forward problems. An example of
this consideration is the temperature distribution on the wall of
an optical fiber drawing furnace. The temperature at the center
of the furnace is relatively easy to measure using an instrumented
graphite rod. The temperature at the walls of the furnace is very
difficult to measure due to the cylindrical shape of the furnace,
inaccessibility, and high temperatures. Issa et al. [1] developed a
regularization technique to use the center line temperature to pre-
dict the furnace wall temperature. Thus an inverse problem was
solved and optimization was used to make the final result essen-
tially unique.

Many methods are available to solve inverse problems. Several
books [2–5] and articles [6–11] have been published on the sub-
ject. However few articles cover the inverse convection problems,
and those that do often cover it as an aside to radiative or conduc-
tion problems. Of the few articles available, often a simple yet
effective method is used to solve the inverse convection problem.
That method is to iterate the simulation until it matches the known
data, often requiring many iterations. This would be time consum-
ing in large and complicated domains. One such example is the pa-
per by Liu et al. [12], in which they use inverse convection methods

to determine thermal profiles in a slot vented enclosure. They use
this iterative approach requiring 20 to 30 iterations to achieve less
than 1% error.

Knight et al. [13] used an iterative experimental–numerical
data driven approach, coupled with a response surface, to predict
the temperature and velocity of a jet in a crosswind. This method
helps in predicting which data points need to be sampled in be-
tween iterations. They found that the methodology was able to
predict jet velocity within experimental uncertainty and source
temperature within 9%. However, the second stage of their ap-
proach over-predicted source temperature by as much as 23%
[13,14].

The present study is a continuation of the work initiated by
Knight et al. [13] and Ma et al. [14]. Preliminary work was covered
in [15], with the sole purpose of being able to predict the source
location as well as source strength. The added complexity of the
unknown source location warranted an overall simplification of
the problem from a jet in a crosswind to a plume in a crosswind.
The overall goal is to predict, within acceptable error, both the
location and source strength of the plume. For this methodology
to be most useful, the number of sample points must be limited
to a select few, and the number of simulations also must be kept
small.

2. Experimental system

Most inverse solution methodologies require a fundamental
understanding of the forward problem. This particular method is
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no different. As previously described, the forward problem is a
plume of heated air in a crosswind. A small region heated to a given
temperature TS is subjected to a flow of velocity U1, which is per-
pendicular to the direction of the vertical flow induced by thermal
buoyancy.

The wind tunnel test section dimensions are 54.5 � 305 �
254 mm, and can produce velocities in the range of 0 � 5.0 m/s.
Fig. 1 is a schematic of the experimental wind tunnel including
the computational domain. All dimensions are in millimeters and
the depth into the page is 305 mm. The heated section uses a resis-
tance type electric heater to heat a copper block, encouraging a
uniform heated surface, which is 25.4 mm wide. The maximum
temperature of the heated section is limited to a maximum of
450 K due to material limitations of the wind tunnel. This creates
a limitation to the maximum free stream velocity within the tunnel
as the maximum heat input gets overwhelmed by the free stream
above 1.0 m/s. That is to say the thermal plume is difficult to detect
using the methods described here. The temperatures are measured
using a K-type thermocouple mounted on a two-dimensional stage
for motion within the plane of the figure. The X-direction is in the
direction of the free stream, with zero at the upstream edge of the
heated block. The Y-direction is in the direction of the plume, with
zero at the surface of the heater.

A Pitot-static tube is used to determine the free stream velocity.
The tube is attached to a NIST traceable differential pressure sensor
from Omega (PX655–0.1DI), which has a full scale reading of 0.1
inches of water. The pressure sensor has an error of 0.05% of full
scale reading. This results in a maximum of 3% error of the calcu-
lated velocity, which is at most 0.018 m/s for the applicable
velocities.

The temperature is measured using a K-type thermocouple
probe mounted on an X–Y traversing stage, and recorded using a
National Instruments data acquisition board. Samples over several
days yield a maximum difference of 7% outside the plume, and a
maximum of 2% within the plume, indicating good repeatability.

3. Numerical simulations

The numerical simulations were carried out using the software
package Ansys Fluent version 13[16]. The Navier–Stokes equations
were solved using a three dimensional, steady state, realizable
k � � model with enhanced wall effects. The three-dimensional
model is employed due to a limitation of Fluent, solid–solid con-
duction is not modeled at all in two-dimensional conjugate heat
transfer problems, and the desire to ensure two dimensionality

Nomenclature

b,m model parameters
C1,C2,C1�,Cl,rk,r� k � � model coefficients
d number of simulations
E thermal energy
F minimization function
I turbulence intensity
k turbulence kinetic energy
l turbulence length scale
MW molecular weight
n number of sample locations
P pressure
Prt turbulent Prandtl number
T temperature
t time
U free stream velocity
u,v velocity components
X,Y normalized coordinates
x,y coordinates

Greek symbols
� turbulence dissipation rate

k thermal conductivity
l dynamic viscosity
lt eddy viscosity
/ normalized temperature / ¼ T�T1

TS�T1
q density

Superscripts
0 instantaneous
� ensemble averaged
⁄ predictor stage, alternative heat flux eqn.

Subscripts
1 free stream
A,B data set A,B
i, j,k index
mod modified
P predicted
S source

Fig. 1. Schematics of the wind tunnel and the computational domain [15].
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