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a b s t r a c t

In this paper, the problem of steady Poiseuille flow of two immiscible incompressible micropolar fluids
between two horizontal parallel plates of a channel with constant wall temperatures is studied in terms
of entropy generation. The flow is assumed to be governed by Eringen’s micropolar fluid flow equations.
The flow region is divided into two zones, the flow of the heavier fluid taking place in the lower zone-I. No
slip condition is taken on the plates and at the interface continuity of velocity, micro-rotation, tempera-
ture, heat flux and shear stresses is imposed. The velocity, micro-rotation and temperature fields are
derived analytically. The dimensionless quantities-entropy generation number (Ns), Bejan number (Be)
and irreversibility ratio (/) are analytically derived. The effects of material parameters like micropolarity
(ci), couplestress (si) on the velocity, micro-rotation and temperature are investigated. The derived equa-
tion for the dimensionless entropy generation number is used to interpret the relative importance of fric-
tions to conduction by varying viscous dissipation parameter. The entropy generation near the plates
increases more rapidly in fluid I than in fluid II as viscous dissipation effects become more important
in zone I. The velocity and temperature profiles are found to be in good agreement with the distributions
of the dimensionless entropy generation number (Ns).

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

There is a great demand in many industries and projects to
thoroughly analyze, improve and design the power systems. In
classical methods, the efficiency of the power systems is studied
based on first law of thermodynamics. The recent methodologies
study the systems based on second law of thermodynamics. The
new methodology is called exergy analysis (analysis of available
work). In heat transfer process in any system involves exergy
losses i.e., destroy the available work due to temperature gradients
and fluid frictions. This is due to irreversible work involved in the
process. This can be accounted by second law of thermodynamics.
Exergy loss is proportional to entropy generation rate. Hence min-
imization of entropy generation rate indicates optimum exergy or
amount of available work. These methods are popularly known as
Entropy Generation Minimization (EGM) methods. This was first
introduced by Bejan [1,2] and he gave good engineering sense for
the study by focusing on irreversibility. This new methodology is
based on simultaneous application of first and second law of ther-

modynamics in analysis and design of the systems. Bejan [1] stud-
ied the heat transfer problems in the pipe flow, boundary layer
flow past a plate, flow in the entrance region of a rectangular duct
using EGM. Bejan [3] demonstrated how the difference between
reversible work and work is proportional to entropy generation
rate. In the paper he explained how EGM is useful in obtaining
optimal allocation of heat transfer area, optimal latent heat storage
temperature and optimal sensible heat storage time interval. These
methods can be found in detail in the treatises by Bejan [4–7] and
Bejan et al. [8].

The flow and heat transfer of immiscible fluids are of special
importance in the petroleum extraction and transport problem.
The reservoir rock of oil field contains many immiscible fluids in
its pores. A portion of the pores contains water and the rest con-
tains oil or gases or both. The immiscible flows in crude oil trans-
port was studied experimentally by Bakhtiyarov et al. [9].
Oscillatory flow and heat transfer in two immiscible viscous fluids
was examined analytically by Chamkha [10]. Kamisli et al. [11] ex-
plained very nicely the thermodynamic interface conditions in-
volved in a flow of immiscible fluids. They observed that
minimum temperature gradient in transverse direction of the flow
offers minimum entropy generation near the plates. variation of
irreversibility in terms of Bejan number (Be) and energy stream
line tracking inside a porous channel are explained in detail by
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Shohel Mahmud et al. [12]. The effect of geometric parameters to
find optimum shape of the ducts by using second law analysis is
studied by Sahin [13–15] and Hakan [16].

This paper aims at second law analysis for the flows of two
immiscible micropolar fluids in a parallel plate channel. Micropolar
fluids exhibit couple stresses and the particles of the fluid have
independent rotation vector in addition to velocity vector. This
theory of micropolar fluids was proposed by Eringen [17,18]. For
experimental determination of parameters of micropolar fluids
one can refer Migun et al. [19] and Kolpashchikov et al. [20]. An ac-
count of the earlier developments in polar fluid theory can be
found in the book by V.K.Stokes [21]. Some basic viscous flows in
micropolar fluids was discussed by Ariman et al. [22] and the exist-
ing state of art can be seen in the excellent treatise of Lukaszewicz
[23]. Jerome et al. [24] gave molecular interpretation for the
Poiseuille flow of a micropolar fluid.

The problem of simultaneous flow of immiscible fluids in chan-
nels is of importance in industrial processes such as transportation
of two or more fluids in the same pipe or channel. So there has
been widespread interest in the study of flow through channel
and tubes in the recent years. In many of the areas fluid flow, flow
of immiscible liquids or multi-phase fluids occur. For example
blood flow in arteries has been studied by many researchers con-
sidering blood as two phase flow [25]. In view of these, several
investigations on multiphase flows are reported by various
researchers. Bird et al. [26] found an exact solution for the laminar
flow of two immiscible fluids between two parallel plates. Kapur
et al. [27] have studied the flow of two immiscible incompressible
viscous fluids between two parallel plates. Bhattacharya [28] dis-
cussed the flow of immiscible fluids between rigid plates with a
time dependent pressure gradient. Mass transfer into a laminar
fluid stream from the moving interface of two immiscible fluids be-
tween parallel plates was discussed by Hikita et al.[29]. Jie Li et al.

[30] have discussed numerical study of flows of two immiscible
liquids at low Reynolds number. Chamka et al. [31] discussed flow
of two immiscible fluids in a porous and non-porous channel.
Malashetty et al. [32] have discussed the convective magnetohy-
drodynamic two fluid flow and heat transfer in an inclined channel.
Umavathi et al. [33] studied unsteady two-fluid flow and heat
transfer in a horizontal channel. Prathap Kumar et al. [34] analyt-
ically examined fully-developed free-convective flow of micropolar
and viscous fluids in a vertical channel. Dragis Nikodijevic et al.
[35] have studied MHD Couette two-fluid flow and heat transfer
in presence of uniform inclined magnetic field. The heat transfer
of two immiscible fluids in the presence of uniform inclined mag-
netic field was discussed by Nikodijevic et al. [36]. Szeri et al. [37]
discussed the flow of a non-Newtonian fluid between heated par-
allel plates. Nield et al. [38] discussed thermally developing forced
convection in a porous medium between two parallel plates with
walls maintained at uniform temperature.

The present study is taken up in view of realistic situations cited
in [9,25] and growing importance of study of entropy generation
methods (EGM). Many researchers considered the immiscible flow
of viscous fluids. But very few [33] have taken up the study of
micropolar fluids. Since micropolar fluids represent the more gen-
eral and realistic study of properties of crude oils, blood, etc. Here
we are considering the flow of immiscible micropolar fluids be-
tween the parallel plates.

2. Fomulation of the problem

The physical model of the flow shown in Fig. 1, consists of two
parallel plates extending in the X-direction. The height between
the plates is 2h. The plates are maintained at constant tempera-
tures. The width of the plates is much greater than the distance be-

Nomenclature

Be Bejan number ¼ 1
1þ/

� �
Br Brinkman number ð¼ EkPrÞ
Br
X viscous dissipation parameter
ci ¼ ji

li
material parameter or micropolarity parameter

C non-dimensional micro-rotation component in z-direc-
tion

dij components of the strain
D deformation tensor
E specific internal energy
Ek Eckert number
�f body forces per unit mass
2h height of the free channel
�h heat flux
j gyration coefficient
k1, k2 thermal conductivity of the fluid in zones-I, II
�l body couple per unit mass
mij couple stress tensor
nb ratio of couple stress viscosity coefficients ¼ b2

b1

� �
nk ratio of thermal conductivities ¼ k2

k1

� �
nl ratio of viscosities ¼ l2

l1

� �
nq ratio of densities ¼ q2

q1

� �
Nfi entropy generation due to viscous dissipation
Nsi dimensionless total entropy generation number
Nyi entropy generation due to transverse conduction
Nu Nusselt number
P pressure
Pr Prandtl number

�q velocity vector
Re Reynolds number
s1,s2 couple stress parameters
(Si)G entropy generation rate
(Si)G,C characteristic entropy transfer rate
tij stress tensor
T1, T2 non-dimensional temperatures of the plates
u non-dimensional velocity in X-direction
x, y non-dimensional space coordinates
X, Y space co-ordinates

Greek symbols
a, b, c gyration viscosity coefficients
dij kronecker delta
d1 couple stress parameter ¼ b1

l1h2

� �
�ijk Levi–Civita symbol or permutation symbol
j1, j2 micro-rotation viscosity coefficients
l1, l2 viscosity coefficients
�m micro-rotation vector
X dimensionless temperature difference ¼ DT

To

� �
U dissipation function
/ irreversibility distribution ratio ¼ Nf

Ny

� �
q density
h non-dimensional temperature

Subscripts
1 fluid in zone I
2 fluid in zone II
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