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a b s t r a c t

Molecular transverse diffusion through unsteady and heterogeneous medium is accounted for in solute
mass transport originating from a uniform pulse-type stationary point-source. The corresponding
two-dimensional advection–dispersion equation with variable coefficients is solved by the explicit finite
difference method. The heterogeneity of the medium is described by a position dependent linear
non-homogeneous expression for velocity with unsteady exponential variation with time. Variation of
the dispersion parameter due to heterogeneity is considered proportional to square of the velocity.
Results are compared to analytical solutions reported in the literature and good agreement is found.
The explicit finite difference method is shown to be effective and accurate for solving the related two-
dimensional advection–dispersion equation with variable coefficients in semi-infinite media, which is
especially important when arbitrary initial and boundary conditions are required.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The degradation of air, water and soil has renewed research
interest in the field of solute transport by flow media. This trans-
port can be described by the advection–dispersion equation. It is
a partial differential equation in space and time that is of much sig-
nificance in such diverse disciplines as chemical and petroleum
engineering or bio and soil physics [1]. For example, the advec-
tion–dispersion equation can be used to determine the pollutant
concentration downstream from intended mining operations in
order to predict and plan how to reduce their environmental
footprint.

Lindstrom and Boersma [2] have reviewed analytical solutions
for one-dimensional solute transport through media idealized as
homogeneous. However, the actual solute permeation through
air, soil or groundwater tends to be position dependent. To account
for this heterogeneity, spatially-dependent dispersion and velocity
have to be considered. This has been solved analytically for special
cases in one dimension [3–8]. Numerical solutions are required for
cases that are more general and for problems in two or three
dimensions [9–16]. Dehghan [12] employed weighed explicit finite
difference method (EFDM) for one-dimensional advection–
dispersion equation with increased accuracy of the obtained
numerical results if compared to that of standard finite difference
methods. Karahan [13] used implicit finite difference method
(IFDM) for one-dimensional advection–dispersion equation using

spreadsheets. Walter et al. [17] used Crank–Nicholson central dif-
ference scheme in one dimension to model soil solute release into
runoff with infiltration. In the 1970s and 1980s, IFDMs were gen-
erally preferred over EFDMs. This trend has been changing with
the advancement of computers, shifting the emphasis to EFDMs.
Being often unconditionally stable, the IFDM allows larger step
lengths. Nevertheless, this does not translate into IFDM’s higher
computational efficiency because extremely large matrices must
be manipulated at each calculation step. EFDM is also simpler in
addition to being computationally more efficient. We have demon-
strated in our recent work [18,19] the effectiveness of the EFDM in
solving one-dimensional advection–dispersion equation with vari-
able coefficients. This is now expanded to two dimensions in semi-
infinite and horizontal media with a small-order heterogeneity.
The heterogeneity is represented by interpolating velocity linearly
as a non-homogeneous increasing function of position over the
finite domain for evaluating concentration values. Dispersion
unsteadiness is another variation that is allowed in order to accom-
modate the finding by Freeze and Cherry [20] that the dispersion is
proportional to the nth power of velocity, with the exponent n
ranging from 1 to 2.

Expressions for velocity and dispersion are written in this text
in degenerate form [21,22] and the solution is presented to show
solute transport along both the longitudinal and transverse
directions. A significant solute transport is noted along transverse
direction even at very low transverse velocity and dispersivity rel-
ative to their longitudinal counterparts. This shows that the two-
dimensional model is more appropriate than a one-dimensional
model.
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2. Advection–dispersion equation

Let solute particles of a pollutant be entering a body of air, soil
or water (including groundwater) at uniform rate at some location,
continuously for a fixed amount of time. In other words, there is a
stationary point-source emitting a uniform pulse of pollutants
(Fig. 1). This could be a smokestack, volcano, sewage outlet, or
infiltration from a garbage dump, septic tank or tailings pond that
is uniformly active for a fixed period of time and then ceases. From
such point-source as the origin of mutually perpendicular horizon-
tal x and y axes (06x <1; 06y <1) defining a horizontal plane,
solute particles are transported by diffusion and convection mainly
downstream in the longitudinal direction chosen for the x-axis
(with the y-axis along the transverse direction).

Let the velocity components of the flow field in x and y
directions at position (x,y) in the horizontal plane be u(x, t) and
v(y, t), respectively. Both satisfy the Darcy law if the medium is por-
ous; or laminar flow conditions otherwise. Further, let Dx(x, t) and
Dy(y, t) be longitudinal and transverse components of the solute
dispersivity parameter at the same position, respectively [23].
The linear advection–dispersion partial differential equation in
two-dimensional horizontal plane medium may be written in the
following general form:
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where C(x,y, t) is the dispersing solute concentration of the pollu-
tant being transported along the flow field through the medium
at a position (x,y) at time t.

To solve the two-dimensional advection–dispersion Eq. (1) ana-
lytically [24], a set of initial and boundary conditions are needed.
Initially, the semi-infinite medium is considered solute free until
introducing a uniform pulse from the pollution source at the origin
of the x–y axes, lasting until (ceasing at) time t0. Flux type homo-
geneous conditions are assumed at the far ends of the medium,
along both directions. Thus, the initial condition and boundary
conditions are [23]:
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0; x ¼ 0; y ¼ 0; t > t0

�
ð3Þ

@Cðx; y; tÞ
@x

¼ 0; x!1;
@Cðx; y; tÞ

@y
¼ 0; y!1; t P 0 ð4Þ

where C0 is the reference concentration representing the input con-
centration emitted uniformly by the source. Because the medium is
assumed to be heterogeneous, the two perpendicular velocity

components of the flow field are considered to be linear functions
of respective coordinates (x,y) over the finite domain in which con-
centration values are evaluated. Each of the two linear functions can
thus account for a small increase in velocity across the finite region.
Further, velocity is also considered temporally dependent (in the
same functional manner) in both, the longitudinal and transverse
directions. Thus, expressions for velocity components are written
in the degenerate form as:

uðx; tÞ ¼ u0f1ðmtÞð1þ axÞ; vðy; tÞ ¼ v0f1ðmtÞð1þ byÞ ð5Þ

where a and b are the heterogeneity parameters along longitudinal
and transverse directions, respectively. Their dimension is the in-
verse of length [24]. Different values for the pair (a,b) represent
media of different heterogeneity. The other coefficient, m, repre-
sents the unsteadiness parameter. Its dimension is the inverse of
time. Scheidegger [25] found that the solute dispersion parameter
was proportional to square of the velocity when there was enough
time in each flow channel for appreciable mixing to take place by
molecular transverse diffusion. The consideration of transverse
diffusion makes the dispersion problem two-dimensional. Hence,
the variation in dispersion due to heterogeneity is proportional to
square of the respective velocity. Hence:

Dðx; tÞ ¼ Dx0f2ðmtÞð1þ axÞ2; Dðy; tÞ ¼ Dy0f2ðmtÞð1þ byÞ2 ð6Þ

In the particular case of f2ðm; tÞ ¼ f 2
1 ðmtÞ, Scheidegger’s approach

can be applied [25]. Namely expressions (1 + ax), (1 + by), f1(mt)
and f2(mt) are non-dimensional; hence in Eq. (5), the coefficients
u0, v0 may be referred to as uniform longitudinal and transverse
velocity components, respectively (with dimension of speed). Simi-
larly in Eq. (6), Dx0 and Dy0 may be referred to as the initial longitu-
dinal and transverse dispersion coefficients, respectively, with
dimension of m2 s�1. It is ensured that f(mt) = 1 for m = 0 or t = 0
(m = 0 represents the steady flow and steady solute transport while
t = 0 represents the initial state).

3. Analytical solution of advection–dispersion equation

Analytical solution of the advection–dispersion equation (1),
subject to initial condition (2) and boundary conditions (3) and
(4), is [23]:

Cðx; y; tÞ ¼ Fðx; y; tÞ; 0 < t 6 t0 ð7aÞ
Cðx; y; tÞ ¼ Fðx; y; tÞ � Fðx; y; t � t0Þ; t > t0 ð7bÞ

where:
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and where:
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Solution (7) may also be used for the following set of temporally
dependent functions [23]:

Fig. 1. Conceptual schematic of the physical model for solute transport from a pulse
type source.
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