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a b s t r a c t

To investigate dispersion and statistics of heavy particles in three-dimensional well-developed turbulent
shear flows, direct numerical simulation is used to study a particle-laden, spatially-evolving planar jet
with a moderate Reynolds number of 3000. The governing equations of the gas phase are solved by
the fractional-step projection schemes with finite volume method. The particles are traced in the
Lagrangian framework based on one-way coupling. The instantaneous distribution of heavy particles at
intermediate Stokes numbers has non-uniform clustering spatial structure, which can be better charac-
terized by the correlation dimension. However, from the statistical point of view, the particle dispersion
and particle dynamics are found to be non-linearly monotonously dependent on the particle Stokes num-
ber when the flow is well-developed. The larger Stokes number leads to the higher ensemble-averaged
slip velocity, the higher ensemble-averaged particle kinetic energy as well as the higher ensemble-aver-
aged particle Reynolds number with approximate power scaling laws. In addition, it is demonstrated that
the Stokes number has a profound effect on inter-particle relative velocity.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the basic free shear flows, turbulent jets can be used to
evaluate turbulence models and explore turbulence physics. Multi-
phase turbulent jets even exist widely in engineering applications,
such as pneumatic transport, coal combustion and aerosol reaction.
To predict and control the coherent structures and particle disper-
sion in the flows is of great importance for optimized design and
efficient applications.

Chung and Troutt [1] simulated particle dispersion in an axi-
symmetric jet using the discrete vortex element approach. They
reported that the particle dispersion extent depends strongly on
the ratio of particle aerodynamic response time to the character-
istic time of the jet. Aggarwal and Uthuppan [2] numerically
investigated the effect of controlled excitation on particle disper-
sion in an axisymmetric jet and reported that the effect on par-
ticle dispersion for all forcing cases is the most significant when
the Stokes numbers of particles are near unity. Mashayek and
Jaberi [3] studied dispersion of solid particles in forced isotropic
low-Mach-number turbulent flows by direct numerical simula-
tion (DNS), and reported a constant ratio of the RMS Mach num-
ber to the mean Mach number for different particles. Glaze and

Frankel [4] investigated the effect of dispersion characteristics on
particle temperature in an idealized non-premixed reacting jet. It
was found that the particle temperature behavior is a strong
function of the spatial dispersion behavior. Fan et al. [5] studied
particle dispersion in a two-dimensional turbulent plane jet. The
local-focusing phenomenon of particle dispersion is discussed.
The previous studies have demonstrated that the particle con-
centration, temperature and other fields are strongly affected
by large-scale structures. The effect of large-scale structures on
particles can be characterized in terms of the particle Stokes
number, defined as the ratio of the particle response time to
the characteristic time of large-scale structures. For Stokes num-
bers near 1, particles concentrate largely in high strain-rate re-
gions and the cores of vortex structures are essentially devoid
of particles. This organized particle distribution has been known
as preferential concentration [6].

However, there is little work on the effects of three-dimensional
small-scale vortex structures on particle dispersion and statistics
in turbulent jets, which is important to industrial applications. In
the present study, we investigate the influences of the particle
Stokes number on heavy particle dispersion in a three-dimensional
well-developed planar jet. The manuscript is organized as follows.
In Section 2 we describe the flow configuration, the governing
equations and the numerical methods. The numerical results and
discussions are given in Section 3. The last section is devoted to
summary and conclusions.
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2. Mathematical descriptions

2.1. Flow configuration and boundary conditions

Fig. 1 shows the sketch of the three-dimensional gas–solid two-
phase turbulent planar jet investigated in the present study, where
U0 denotes the bulk velocity of the jet inflow. The ratio of the noz-
zle width d to the initial momentum thickness h0 is set to be 20.
The Reynolds number of the jet based on the nozzle width and
the inflow velocity is 3000. The span of the computational domain
in the streamwise (x), lateral (y) and spanwise (z) direction is
20 � 20 � 6.4d. The fluid and the particles are injected into the
computational domain through the whole nozzle.

Initially, a shear layer with the velocity profile as follows is gi-
ven in the region of the nozzle width d in the flow-field:

u ¼ U0

2
þ U0

2
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y
2h0
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v ¼ w ¼ 0; ð1Þ

where h0 is the initial momentum thickness. u, v and w represent
the streamwise, lateral and spanwise velocities, respectively. To
generate realistic turbulent inflow boundary conditions, a digital fil-
ter based method proposed by Klein et al. [7,8] is applied. This
method is able to reproduces first and second order one point sta-
tistics, and has been demonstrated to be simple, flexible and accu-
rate. In the present study, velocity fluctuations with intensity of 2%
are generated and imposed on the inflow top-hat profiles. Outside
the region of the nozzle width d, all the fluid velocities are set as
zero. At the outflow boundary, Neumann boundary conditions for
the velocity and the pressure are used. At the top and the bottom
boundaries, the pressure is set to be zero and the tangential veloc-
ities are interpolated to allow mass entrainment. In the spanwise
direction, periodic boundary conditions are applied.

For grid resolution, it has been shown in previous study [9] that
when the grid scale used in DNS is smaller than or in the same or-
der of the Kolmogorov micro scale g, one can get the solutions with
enough precision. In the present study, the Kolmogorov micro scale
g is estimated to be 0.05d. So uniform staggered grid
Dx ¼ 1

15 d ¼ 1:33g and Dz ¼ 1
20 d ¼ g are arranged along the stream-

wise and the spanwise directions. In the region of -4.5d < y < 4.5d,
uniform grid Dy ¼ 1

30 d ¼ 0:67g is arranged to capture small-scale
structures in the core shear region of the jet. But outside of this re-
gion, stretch grid is used along the lateral direction. The total grid
points 300 � 400 � 128 = 15.36 � 106 are used along x, y and z
directions.

2.2. Governing equations for fluid

The gas phase is regarded as an incompressible Newtonian
fluid. The inter-phase momentum coupling is neglected. When
the body force is not included, the non-dimensional governing
equations for the fluid motion can be expressed as:

@ui

@xi
¼ 0 ð2Þ

@ui

@t
þ @uiuj

@xj
¼ � 1

q
@p
@xi
þ 1

Re
@

@xj

@ui

@xj
þ @uj

@xi

� �
ð3Þ

where the characteristic velocity and length scales are U0 and d,
respectively.

To solve the above equations, the finite volume method and the
fractional-step projection technique [10] based on staggered Carte-
sian mesh are applied. Central differences are used for spatial dis-
cretization and an explicit low-storage, third-order Runge–Kutta
scheme [11] is used for time integration. A direct fast elliptic solver
is used to solve the Poisson equation. Considering the CFL rule, the
computational time step is set to be 0.02. Total about 15 flow-
through times are performed for statistics.

2.3. Governing equations for particles

The heavy particles are traced in the Lagrangian framework. As-
sume the particles are spherical with same diameter dp and density
qp of 2000 for each case. Since the maximum value of the ratio of
the particle diameter to the Kolmogorov length scale is around 0.2,
the traditional point force model is used to describe particle mo-
tion. The potential forces acting on a particle, such as the pressure
gradient, virtual mass, lift, and Basset forces can be neglected
based on the larger particle–fluid density ratio of 2000 [12]. Then
the main forces become the Stokes drag force and the gravity force.
Compared to the Stokes drag force, the gravity force is negligible.
As a result, the governing equation for particle motion can be writ-
ten as:

mp
dV
dt
¼

pd2
p

8
CDqg jU � V jðU � VÞ ð4Þ

where CD is the coefficient of drag force, CD ¼ 24
Rep

f : f is the modifica-
tion factor, f ¼ 1þ 0:15Re0:687

p if Rep 6 1000 [13], where Rep is the
Reynolds number of particles, defined as Rep = |U � V| dp/m.

Substituting the aerodynamics response time sp ¼ qpd2
p=18l

into Eq. (3), yields the non-dimensional governing equation for
particle motion:

dV
dt
¼ f

St
ðU � VÞ ð5Þ

where V the velocity vector of the particle, U the velocity vector of
fluid at the position of the particle. St is the particle Stokes number,

defined as St ¼ qpd2
p=ð18lÞ
d=U0

. The velocity and displacement of the parti-

cle can be obtained by integrating Eq. (5). Third-order Lagrangian
interpolating polynomial is used to get the fluid velocity at the po-
sition of particle.

To investigate the dependence of particle dispersion and parti-
cle dynamics on the particle Stokes number, the selected Stokes
number ranges from 0 to 67.75. The particles at the Stokes number
of 0 represent the fluid tracer. The corresponding governing equa-
tion is

dX
dt
¼ U ð6Þ

where X is the particle position and U is the fluid velocity at the par-
ticle position.

Before the particles are injected into the computational domain,
they are distributed uniformly in the nozzle and their velocities
equal the velocities of the local fluid. 231 particles are released
every 10 time steps. The maximum volume fraction of the particles
is about 10�4, and the maximum mass loading is about 0.1. Thus,
the present gas–solid two-phase jet is assumed as a dilute flow,
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Fig. 1. Sketch of the three-dimensional gas–solid two-phase turbulent plane jet.
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