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a b s t r a c t

Dual-phase-lagging (DPL) equation with temperature jump boundary condition shows promising for ana-
lyzing nano heat conduction. For solving it, development of higher-order accurate and unconditionally
stable (no restriction on the mesh ratio) numerical schemes is important. Because the grid size may be
very small at nano-scale, using a higher-order accurate scheme will allow us to choose a relative coarse
grid and obtain a reasonable solution. For this purpose, in this article we present a higher-order accurate
and unconditionally stable compact finite difference scheme based on the ratio of relaxation times
(0 6 B 6 1 and B > 1). The method is illustrated by three numerical examples including a 2D case.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

For the problem of self-heating in micro-electronic devices or
for situations involving very low temperature near absolute zero,
heat source, such as laser, heat is found to propagate at a finite
speed [1]. One of the best description of such heat transfer is the
dual-phase-lagging (DPL) model which is non-Fourier heat conduc-
tion and was proposed by Tzou in 1995 as [2,3]:

qðt þ sq; xÞ ¼ �krTðt þ sT ; xÞ; ð1Þ

where sq and sT stand for the heat flux q and temperature gradient
rT phase lags, respectively, which are positive and intrinsic proper-
ties of the material.

Using Taylor series expansion of Eq. (1) with respect to time up
to the first-order derivative yields:

qþ sq
@q
@t
¼ �k

@T
@x
� ksT

@2T
@t@x

: ð2Þ

Coupled with the energy equation, � @q
@x ¼ c @T

@t , where c is the heat
capacity of the material, one may obtain the heat conduction equa-
tion under the DPL effect as follows:
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c
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 !
: ð3Þ

This model considers only the effect of finite relaxation time by
using the heat flux and temperature phase lags where the former

is caused by micro structural interactions such as phonon scattering
and the latter is interpreted as the relaxation time due to fast-tran-
sient effects of thermal inertia [3]. Well-posedness and solution
structure as well as stability of the DPL heat conduction have been
analyzed [4–9]. Analytical solutions and numerical methods for the
DPL equation with Dirichlet or Neumann boundary condition have
been well studied. In particular, Chen and Tzou [10,11] used the La-
place transform method to obtain the analytical solutions for the
DPL equation with Dirichlet and Neumann boundary conditions,
respectively. Lin et al. [12] employed the separation of variables
method to obtain the analytical solutions of the DPL equation with
homogeneous Dirichlet and Neumann boundary conditions. Smith
et al. [13] also employed the separation of variables method to ob-
tain the analytical solution for the DPL equation with the homoge-
neous Neumann boundary condition. Tang and Araki [14] derived
an analytical solution by using the Green’s function method and fi-
nite integral transform techniques for the DPL equation with a
homogeneous Neumann boundary condition. Al-Nimr et al. [15]
used the Laplace transform method to obtain the analytical solution
for the DPL model with the Dirichlet boundary condition in a semi-
infinite interval. Kulish and Novozhilov [16] presented an integral
equation for the Cauchy problem of the DPL model. Lee et al. [17]
gave the Green’s function solution of the DPL model with a homo-
geneous Dirichlet boundary condition. Among those numerical
solutions, Dai et al. [18–20] developed several finite difference
schemes for solving the DPL model with the Dirichlet boundary
condition. Zhang and Zhao [21] also presented a compact high accu-
rate stable numerical solution for the DPL model with the Dirichlet
boundary condition. Prakash et al. [22] solved the DPL equation
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with various Dirichlet and Neumann boundary conditions using the
finite element method. Ho et al. [23] used the lattice Boltzmann
method to obtain numerical solutions for the DPL model with
homogeneous Neumann boundary in multilayered structure. Kuna-
dian et al. [24] presented a finite difference solution for the DPL
equation with the Dirichlet and Neumann boundary conditions in
a semi-infinite interval. Liu and Cheng [25] applied the Laplace
transform method together with the control volume method to ob-
tain a numerical solution of the DPL model with the Dirichlet
boundary condition in layered films. Shen and Zhang [26] gave a
numerical solution for the DPL model with the Dirichlet boundary
condition obtained using a high-order TVD scheme with Roe’s
superbee limiter function. Chou and Yang [27,28] employed the
space–time conservation element and solution element (CESE)
method to solve the DPL model in finite medium with pulse surface
heating. In recent years, utilization of the DPL model to simulate
heat transfer in nano-structures has been considered by researchers
[1,29–31]. In particular, one-dimensional problem of heat conduc-
tion for the Knudsen numbers greater than 0.1 corresponding to mi-
cro/nano-structures was implemented by Basirat et al. [31] using
the DPL model. It has been found that the DPL model with no-tem-
perature-jump on boundaries neglects the effects of boundary pho-
non scattering. As a result, the obtained results lead to unsatisfying
results especially near boundaries [1]. It was suggested that a tem-
perature jump boundary condition should be introduced to couple
with the DPL model for nano-scale heat conduction [1]:

T � Tw ¼ aKn
@T
@n

� �
w

; ð4Þ

where Tw is the wall jumped temperature, n is the unit outward
normal vector on the boundary, Kn is the Knudsen number, and a
is a coefficient which may be tuned. Heat transfer regimes for a thin
slab was analyzed in [1] by choosing different values for relaxation
time ratios between 0.0 and 0.1, and for Knudsen numbers from 0.1
to 10 to find how accurate the prediction of the DPL model re-
sponses in the heat conduction of nano-structures. Result shows
that the DPL model coupled with the temperature jump boundary
condition is promising.

In this article, we present a higher-order accurate and uncondi-
tionally stable compact finite difference scheme for solving the DPL
equation with the temperature jump boundary condition. Because
at nano-scale the grid size may be very small, higher-order accu-
racy and unconditional stability are particularly important. Using
a higher-order accurate scheme will allow us to choose a relative
coarse grid and obtain a reasonable solution. On the other hand,
unconditional stability will give no restriction on the mesh ratio.
The obtained scheme is illustrated by three numerical examples.

2. Governing equations

We first normalize Eq. (3) by introducing non-dimensional
parameters [1] as follows:

h ¼ T � T0

Tw � T0
; t� ¼ t

sq
; B ¼ sT

sq
; g ¼ x

L
; Kn ¼

k
L
; ð5Þ

where k and L are the mean molecular mean free path and charac-
teristic length, respectively. As a result, Eq. (3) can be rewritten as:

@h
@t�
þ @2h

@t�2
¼ K2

n

3
@2h
@g2 þ B

@3h
@t�@g2

 !
ð6Þ

and the boundary condition, Eq. (4), becomes

h� hw ¼ aKn
@h
@n

� �
w

; ð7Þ

where hw is the wall jumped temperature. It should be pointed out
that if Kn � 1.0 or is greater than 1.0, the mean molecular mean free
path is almost same order as or greater than the characteristic
length, which is typically the case at nano-scale. For simple nota-
tion, we rewrite the above equations and consider the nano heat
conduction equation as follows:

@T
@t
þ @

2T
@t2 ¼

K2
n

3
@2T
@x2 þ B

@3T
@t@x2

 !
; 0 < x < 1; t > 0 ð8Þ

with the temperature jump boundary condition

Tð0; tÞ � Twð0; tÞ ¼ aKn
@Tð0; tÞ
@x

; ð9aÞ

Tð1; tÞ � Twð1; tÞ ¼ �aKn
@Tð1; tÞ
@x

ð9bÞ

and an appropriate initial condition.

3. Higher-order compact finite difference scheme

To develop an accurate finite difference scheme, we first design
an uniform mesh on [0,1], where grid points are xi = ih,
i = 0,1, . . . ,N, and h ¼ 1

N. We denote tn = nD t, where Dt is the time
step and n is the time level. It is noted that when discretizing the
term @2T

@t2 , one needs to use three time levels of finite difference to
approximate it. This may cause some difficulty to analyze the sta-
bility sometimes. To avoid this troublesome, one often introduces
an intermediate function so that the obtained finite difference
scheme is two-level in time. As seen in the derivations below, we
consider two different cases, depending on either 0 6 B 6 1 or
B > 1. The purpose of this consideration is to guarantee that the

Nomenclature

B ratio sT/sq of relaxation times
c heat capacity
h grid size
k thermal conductivity
Kn Knudsen number
N number of grid points
n time level
q heat flux
T temperature
Tw wall temperature
t time
Tn

i numerical solution of T(ih,nDt)
u an intermediate function

un
i numerical solution of u(ih,nDt)

Dt time step
x Cartesian coordinate
a coefficient related to temperature-jumped boundary

condition
5 gradient
rx first-order forward finite difference operator in x
dt second-order central difference operator in t
d2

x second-order central difference operator in x
sT,sq relaxation time
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