FISEVIER

Contents lists available at SciVerse ScienceDirect

## International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt



# Improvement and comparison of some estimators dedicated to thermal diffusivity estimation of orthotropic materials with the 3D-flash method



E. Ruffio\*, D. Saury, D. Petit

Institut P' (UPR CNRS 3346), CNRS, ENSMA, Université de Poitiers, Département fluides, thermique, combustion, ENSMA – BP 40109, 86961 Futuroscope, Chasseneuil, France

#### ARTICLE INFO

Article history:
Received 12 November 2012
Received in revised form 3 April 2013
Accepted 15 April 2013
Available online 14 June 2013

Keywords: Inverse problem 3D-flash method Thermal diffusivity Orthotropic material Estimator Maximum likelihood

#### ABSTRACT

This theoretical and numerical study deals with the estimation of thermal diffusivities of orthotropic materials with the 3D-laser-flash method. This method consists in applying a short non-uniform heat flux to a sample in order to generate three-dimensional heat transfer. An infrared camera is used to measure the evolution of the temperature field at the front face or at the back face of the sample. An estimation procedure, i.e., an estimator, combines these measurements with an analytical solution of the underlying model in order to estimate unknown parameters, i.e., thermal diffusivities, a heat transfer coefficient and parameters related to the spatial shape of the laser beam. In this work, three estimators inspired from previous work are presented and some improvements are proposed. A fourth estimator is introduced and compared to the previous ones. This comparison is based on theoretical standard deviations of thermal diffusivities. Results show that standard deviations can vary up to a factor of 4 and are minimized by using the fourth procedure.

© 2013 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Among various existing methods that have been proposed to estimate thermophysical parameters, the flash method is the most popular method of measuring the thermal diffusivity of solids. The first approach was proposed in 1961 by Parker et al. [1] and deals with the estimation of the in-depth diffusivity of a sample. It consists in applying a very short and uniform burst of energy at the front face of a sample in order to generate one dimensional heat transfer. The resulting temperature rise at the back face of the sample is measured. The model corresponding to the experiment shows that the in-depth diffusivity can be computed once the half-rise time  $t_{1/2}$  is estimated. The experiment, the model and the estimation procedure were later improved. In particular, some developments were devoted to thermally orthotropic materials. Some methods closely related to the original flash method use non-uniform thermal excitations to estimate in-depth and in-plane diffusivities [2-4].

In 1995, Philippi et al. [5] proposed a new experimental setup dedicated to orthotropic materials. This method, called later "3D flash method", allows the three thermal diffusivities of such materials to be estimated. The key idea is to apply a non-uniform burst of energy (from flash lamps or more recently from lasers) on a sam-

ple in order to generate three-dimensional heat transfer. An infrared camera is used to measure temperature fields either at the front face or at the back face of the sample. Temperature fields are then used by an estimator to get an estimation of the three thermal diffusivities (Fig. 1). One interesting feature of this method is that it avoids some experimental precautions. Indeed, no knowledge of the spatial shape of the thermal excitation is required. Information about the time shape is not necessary as long as it is short enough so that it can be considered as an impulse excitation (Dirac). Thanks to the use of infrared camera, the issue of sensor positioning disappeared and is replaced by an image calibration.

By modifying the experimental setup of the 3D flash method, Remy et al. [6] proposed a method that estimates the in-plane diffusivity without any knowledge of the spatial and time shape of the thermal excitation.

The 3D-flash method is not the only one that can be used to estimate thermal properties of orthotropic materials. Approaches inspired from hot plates methods [7–9] or based on the  $3\omega$ -approach [10] can be used as well. However, in our case, the use of the flash method is motivated by the fact that it is not an intrusive method and that it is suitable for flat or slightly curved surfaces.

Estimating thermal diffusivities with the 3D flash method consists in solving a parameter estimation problem. It involves simultaneously an experiment, a model and an estimation procedure (Fig. 1). The experiment setup provides measurements which consist in a set of temperature fields  $T_{ij}^*(z,t_k)$  at the front (z=0) or at the back face  $(z=l_z)$  of a sample. A heat transfer model is developed

<sup>\*</sup> Corresponding author. Tel.: +33 549 498 125; fax: +33 549 498 101. *E-mail addresses:* emmanuel.ruffio@gmail.com (E. Ruffio), didier.saury@ensma.fr (D. Saury), daniel.petit@ensma.fr (D. Petit).

#### Nomenclature

|   |                              |                                                                                                                                                 | $y_h(z,t)$                                               | unitary solution of the 1D heat conduction problem in a    |
|---|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|
|   | Latin sym                    | phols                                                                                                                                           |                                                          | homogenous wall with third type boundary conditions        |
|   | $a_x, a_y, a_z$              | thermal diffusivity along the x- and y-axis                                                                                                     | Y                                                        | vector of model outputs (dim $N_{\rm obs}$ )               |
|   | $A(t_k)$                     | covariance matrix of observables at time $t_k$ (ENH esti-                                                                                       | $Y_{m,n}(z,t_1,$                                         | $t_2$ ) a component of observable vector Y (ERH estimator) |
|   | $I1(\iota_K)$                |                                                                                                                                                 | $Y_{m,n}(z,t_{i})$                                       | a component of observable vector Y (ENH estimator)         |
|   | D ()                         | mator)                                                                                                                                          | Υ*                                                       | vector containing "experimental" observables (dim          |
|   |                              | components of the 2D Fourier-cosine basis                                                                                                       | 1                                                        |                                                            |
|   | $C(z,t_1,t_2)$               | unknown constant value associated with the pair of in-                                                                                          | 7()                                                      | N <sub>obs</sub> )                                         |
|   |                              | stants $(t_1;t_2)$ (ERH estimator)                                                                                                              | $Z_k(z)$                                                 | solutions of the eigenfunction problem                     |
|   | $C_{m,n}$                    | unknown constant value associated with harmonic ( <i>m</i> ;                                                                                    |                                                          |                                                            |
|   |                              | n) (ENH estimator)                                                                                                                              | Greek syı                                                | nbols                                                      |
|   | d                            | diameter of the laser beam                                                                                                                      | $\alpha_m, \beta_n$                                      | pulsations along x- and y-axis associated with harmonic    |
|   | D(t)                         | uniform drift of temperature fields                                                                                                             | ,                                                        | (m;n)                                                      |
|   | $e_Y$                        | random vector corresponding to the effect of measure-                                                                                           | ß                                                        | vector of unknown parameters (dim $N_{\beta}$ )            |
|   | 01                           | ment noise on $Y^*$                                                                                                                             | Â                                                        | vector of estimated parameters (dim $N_{\beta}$ )          |
|   | 0                            | random value corresponding to the noise of harmonic                                                                                             | $egin{array}{c} eta \ \hat{eta} \ \hat{eta} \end{array}$ | vector containing exact values of unknown parameters       |
|   | $e_{m,n}$                    |                                                                                                                                                 | p                                                        |                                                            |
|   | _                            | (m; n)                                                                                                                                          |                                                          | $(\dim N_{\beta})$                                         |
|   | $e_{eta}$                    | vector of errors on unknown parameters $\beta$ (dim $N_{\beta}$ )                                                                               | γ                                                        | a priori known parameters (dim $N_{\gamma}$ )              |
|   | $e_{\gamma}$                 | vector of errors on a-priori known parameters $\gamma$ (dim                                                                                     | γ                                                        | vector containing exact values of a-priori known param-    |
|   |                              | $N_{\gamma}$ )                                                                                                                                  |                                                          | eters (dim $N_{\gamma}$ )                                  |
|   | $E_{m,n}$                    | limit temperature associated with the harmonic $(m; n)$                                                                                         | $\delta(k)$                                              | Kronecker symbol                                           |
|   | h                            | heat loss coefficient                                                                                                                           | $\delta(t)$                                              | Dirac function                                             |
|   | Н                            | Biot number                                                                                                                                     | $\theta_{m,n}(z,p)$                                      | Laplace transform of harmonic $(m; n)$ , i.e., components  |
|   | $J(\beta)$                   | objective function                                                                                                                              | ,                                                        | of the temperature field in spatial basis $B_{m,n}(x,y)$   |
|   | $l_x, l_y, l_z$              | dimensions of the sample (thermal images) along the <i>x</i> -,                                                                                 | $\theta_{m,n}(z,t)$                                      | harmonic $(m; n)$ in spatial basis $B_{m,n}(x,y)$          |
|   | -2,1-3,1-2                   | y- and z-axis $(m)$                                                                                                                             | $\theta_{p,q}^{\text{ref}}(z,t)$                         | reference harmonic $(p;q)$ (ENH estimator)                 |
|   | $N_{eta}$                    | number of unknown parameters                                                                                                                    | $\lambda_{x}, \lambda_{y}, \lambda_{z}$                  | thermal conductivity along the $x$ -, $y$ - and $z$ -axis  |
|   | $N_{\gamma}$                 | number of a-priori known parameters                                                                                                             | $\rho C$                                                 | volumetric thermal capacity                                |
|   | ,                            |                                                                                                                                                 | ,                                                        |                                                            |
|   | Nobs                         | number of observables                                                                                                                           | $\sigma_m$                                               | standard deviation related to the measurement noise of     |
|   |                              | t) non-uniform drift of temperature fields                                                                                                      |                                                          | pixels                                                     |
|   | $N_{\Delta t}$               | number of pairs of instants $(t_{1,i}; t_{2,i})$                                                                                                | $\sigma_{m,n}$                                           | standard deviation related to the noise of harmonic        |
|   | $N_{t}$                      | number of instants $t_k$                                                                                                                        | ć                                                        | (m;n)                                                      |
|   | Q                            | amount of energy absorbed by the sample                                                                                                         | $\sigma_{p,q}^{	ext{ref}}$                               | standard deviation related to the noise of reference har-  |
|   | p                            | Laplace variable                                                                                                                                |                                                          | monic (p;q)                                                |
|   | r(x,y)                       | shape function associated with the laser beam                                                                                                   | $\widehat{\tau_x}^{(m)}$                                 | estimation of $\tau_x$ performed with harmonic (m;0) (MSEH |
|   | $r_{m,n}$                    | $=r(\alpha_m, \beta_n)$ Fourier coefficients of shape function $r(x,y)$                                                                         |                                                          | estimator)                                                 |
|   | $r_{p,q}^{\mathrm{ref}}$     | Fourier coefficients of the reference harmonic $(p;q)$ of                                                                                       | $\widehat{\tau_{\mathbf{v}}}^{(n)}$                      | estimation of $\tau_y$ performed with harmonic (0;n) (MSEH |
|   | <i>p</i> ,q                  | shape function $r(x,y)$                                                                                                                         | J                                                        | estimator)                                                 |
|   | S                            | selection matrix                                                                                                                                | $\phi(x,y,t)$                                            | heat flux density absorbed by the sample due to the la-    |
|   | $t_f$                        | time of the last temperature field                                                                                                              | 7 (11,3,1-)                                              | ser beam                                                   |
|   |                              | analytical solution of the heat transfer modeling                                                                                               | v (7 n)                                                  | Laplace transform of temperature field components in       |
|   |                              |                                                                                                                                                 | $\chi_{m,n}(\sim,P)$                                     | spatial basis $X_m(x)Y_n(y)$                               |
|   | $T_{i,j}^*(z,t_k)$           |                                                                                                                                                 |                                                          | spatial basis $\Lambda_m(x) I_n(y)$                        |
|   | T* / - + \                   | field                                                                                                                                           |                                                          |                                                            |
|   | $T^*(z,t_k)$                 | average temperature computed with measurements                                                                                                  | Operator:                                                |                                                            |
|   | $\overline{T(z,t_k)}$        | average temperature computed with model outputs                                                                                                 | E[X]                                                     | expectation value of random vector X                       |
|   | u(t)                         | time shape function of the laser beam                                                                                                           | cov(X)                                                   | covariance matrix of the random vector <i>X</i>            |
|   | u(p)                         | Laplace transform of time shape function                                                                                                        | std(Y)                                                   | standard deviation of random variable Y                    |
|   | $u_k$                        | strictly positive roots of the transcendental equation                                                                                          | $\langle f(x) g(x)\rangle$                               | dot product between function $f(x)$ and $g(x)$             |
|   |                              | (Eq. (19))                                                                                                                                      | V ( 1) ( 1)                                              | , j j j j j j j j j j j j j j j j j                        |
|   | $V(\beta)$                   | likelihood function                                                                                                                             | Estimator                                                | ro                                                         |
| l | w                            | inverse of the covariance matrix $cov(e_Y)$ (dim $N_{obs}$ -                                                                                    | Estimator                                                |                                                            |
| l |                              | $\times N_{\text{obs}}$ )                                                                                                                       | ERH                                                      | estimation using ratio of harmonics                        |
| l | $X$ or $X_{\beta}$           | sensitivity matrix with respect to $\beta$ (dim $N_{\text{obs}} \times N_{\beta}$ )                                                             | ENH                                                      | estimation using normalization of harmonics                |
| l |                              | sensitivity matrix with respect to $\gamma$ (dim $N_{\text{obs}} \times N_{\gamma}$ )                                                           | MSEH                                                     | multiple step estimation using harmonics                   |
|   | $X_{\gamma} X_{\beta}^{(m)}$ | sensitivity matrix with respect to $\beta$ (unit $N_{obs} \times N_{\gamma}$ ) sensitivity matrix with respect to $\beta$ related to estimation | DEH                                                      | direct estimation using harmonics                          |
| I | $\Lambda_{\beta}$            |                                                                                                                                                 |                                                          |                                                            |
| I | V () V                       | of $\tau_x^{(m)}$ (MSEH estimator)                                                                                                              |                                                          |                                                            |
|   | Y (V) V                      | IVI COULLORS OF THE EIGENFIINSTION NEONIAM                                                                                                      |                                                          |                                                            |

and relates unknown parameters to model outputs. A statistical procedure is then in charge of combining measurements and model outputs to give an estimation  $\widehat{\beta}$  of the unknown parameters  $\beta$ . In other words, an estimator is defined which estimates one or several parameters involved in the statistical distribution of measurements, i.e., in the model.

 $X_m(x)$ ,  $Y_n(y)$  solutions of the eigenfunction problem

During the past decades, improvements were achieved concerning the experiment, the model and the estimator. The objective of this study is to focus on estimators in order to evaluate in what extent this choice influences standard deviations of estimations. The four following methods are presented and some improvements are proposed:

### Download English Version:

# https://daneshyari.com/en/article/7058884

Download Persian Version:

https://daneshyari.com/article/7058884

<u>Daneshyari.com</u>