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a b s t r a c t

This theoretical and numerical study deals with the estimation of thermal diffusivities of orthotropic
materials with the 3D-laser-flash method. This method consists in applying a short non-uniform heat flux
to a sample in order to generate three-dimensional heat transfer. An infrared camera is used to measure
the evolution of the temperature field at the front face or at the back face of the sample. An estimation
procedure, i.e., an estimator, combines these measurements with an analytical solution of the underlying
model in order to estimate unknown parameters, i.e., thermal diffusivities, a heat transfer coefficient and
parameters related to the spatial shape of the laser beam. In this work, three estimators inspired from
previous work are presented and some improvements are proposed. A fourth estimator is introduced
and compared to the previous ones. This comparison is based on theoretical standard deviations of ther-
mal diffusivities. Results show that standard deviations can vary up to a factor of 4 and are minimized by
using the fourth procedure.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Among various existing methods that have been proposed to
estimate thermophysical parameters, the flash method is the most
popular method of measuring the thermal diffusivity of solids. The
first approach was proposed in 1961 by Parker et al. [1] and deals
with the estimation of the in-depth diffusivity of a sample. It con-
sists in applying a very short and uniform burst of energy at the
front face of a sample in order to generate one dimensional heat
transfer. The resulting temperature rise at the back face of the sam-
ple is measured. The model corresponding to the experiment
shows that the in-depth diffusivity can be computed once the
half-rise time t1/2 is estimated. The experiment, the model and
the estimation procedure were later improved. In particular, some
developments were devoted to thermally orthotropic materials.
Some methods closely related to the original flash method use
non-uniform thermal excitations to estimate in-depth and in-plane
diffusivities [2–4].

In 1995, Philippi et al. [5] proposed a new experimental setup
dedicated to orthotropic materials. This method, called later ‘‘3D
flash method’’, allows the three thermal diffusivities of such mate-
rials to be estimated. The key idea is to apply a non-uniform burst
of energy (from flash lamps or more recently from lasers) on a sam-

ple in order to generate three-dimensional heat transfer. An infra-
red camera is used to measure temperature fields either at the
front face or at the back face of the sample. Temperature fields
are then used by an estimator to get an estimation of the three
thermal diffusivities (Fig. 1). One interesting feature of this method
is that it avoids some experimental precautions. Indeed, no knowl-
edge of the spatial shape of the thermal excitation is required.
Information about the time shape is not necessary as long as it is
short enough so that it can be considered as an impulse excitation
(Dirac). Thanks to the use of infrared camera, the issue of sensor
positioning disappeared and is replaced by an image calibration.

By modifying the experimental setup of the 3D flash method,
Remy et al. [6] proposed a method that estimates the in-plane dif-
fusivity without any knowledge of the spatial and time shape of
the thermal excitation.

The 3D-flash method is not the only one that can be used to
estimate thermal properties of orthotropic materials. Approaches
inspired from hot plates methods [7–9] or based on the 3x-ap-
proach [10] can be used as well. However, in our case, the use of
the flash method is motivated by the fact that it is not an intrusive
method and that it is suitable for flat or slightly curved surfaces.

Estimating thermal diffusivities with the 3D flash method con-
sists in solving a parameter estimation problem. It involves simul-
taneously an experiment, a model and an estimation procedure
(Fig. 1). The experiment setup provides measurements which con-
sist in a set of temperature fields T�i;jðz; tkÞ at the front (z = 0) or at
the back face (z = lz) of a sample. A heat transfer model is developed
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and relates unknown parameters to model outputs. A statistical
procedure is then in charge of combining measurements and mod-
el outputs to give an estimation bb of the unknown parameters b. In
other words, an estimator is defined which estimates one or sev-
eral parameters involved in the statistical distribution of measure-
ments, i.e., in the model.

During the past decades, improvements were achieved concern-
ing the experiment, the model and the estimator. The objective of
this study is to focus on estimators in order to evaluate in what ex-
tent this choice influences standard deviations of estimations. The
four following methods are presented and some improvements are
proposed:

Nomenclature

Latin symbols
ax,ay,az thermal diffusivity along the x- and y-axis
A(tk) covariance matrix of observables at time tk (ENH esti-

mator)
Bm,n(x,y) components of the 2D Fourier-cosine basis
C(z, t1, t2) unknown constant value associated with the pair of in-

stants (t1;t2) (ERH estimator)
Cm,n unknown constant value associated with harmonic (m;

n) (ENH estimator)
d diameter of the laser beam
D(t) uniform drift of temperature fields
eY random vector corresponding to the effect of measure-

ment noise on Y⁄

em,n random value corresponding to the noise of harmonic
(m; n)

eb vector of errors on unknown parameters b (dim Nb)
ec vector of errors on a-priori known parameters c (dim

Nc)
Em,n limit temperature associated with the harmonic (m;n)
h heat loss coefficient
H Biot number
J(b) objective function
lx, ly, lz dimensions of the sample (thermal images) along the x-,

y- and z-axis (m)
Nb number of unknown parameters
Nc number of a-priori known parameters
Nobs number of observables
NUD(x,y, t) non-uniform drift of temperature fields
NDt number of pairs of instants (t1,i; t2, i)
Nt number of instants tk

Q amount of energy absorbed by the sample
p Laplace variable
r(x,y) shape function associated with the laser beam
rm,n =r(am,bn) Fourier coefficients of shape function r(x,y)
rref

p;q Fourier coefficients of the reference harmonic (p;q) of
shape function r(x,y)

S selection matrix
tf time of the last temperature field
T(x,y,z, t) analytical solution of the heat transfer modeling
T�i;jðz; tkÞ pixel (i, j) at time tk of the corresponding temperature

field
T�ðz; tkÞ average temperature computed with measurements
Tðz; tkÞ average temperature computed with model outputs
u(t) time shape function of the laser beam
u(p) Laplace transform of time shape function
uk strictly positive roots of the transcendental equation

(Eq. (19))
V(b) likelihood function
W inverse of the covariance matrix cov(eY) (dim Nobs -

� Nobs)
X or Xb sensitivity matrix with respect to b (dim Nobs � Nb)
Xc sensitivity matrix with respect to c (dim Nobs � Nc)
XðmÞb sensitivity matrix with respect to b related to estimation

of sðmÞx (MSEH estimator)
Xm(x), Yn(y) solutions of the eigenfunction problem

yh(z, t) unitary solution of the 1D heat conduction problem in a
homogenous wall with third type boundary conditions

Y vector of model outputs (dim Nobs)
Ym,n(z, t1, t2) a component of observable vector Y (ERH estimator)
Ym,n(z, tk) a component of observable vector Y (ENH estimator)
Y⁄ vector containing ‘‘experimental’’ observables (dim

Nobs)
Zk(z) solutions of the eigenfunction problem

Greek symbols
am,bn pulsations along x- and y-axis associated with harmonic

(m;n)
b vector of unknown parameters (dim Nb)
b̂ vector of estimated parameters (dim Nb)
_b vector containing exact values of unknown parameters

(dim Nb)
c a priori known parameters (dim Nc)
_c vector containing exact values of a-priori known param-

eters (dim Nc)
d(k) Kronecker symbol
d(t) Dirac function
hm,n(z,p) Laplace transform of harmonic (m;n), i.e., components

of the temperature field in spatial basis Bm,n(x,y)
hm,n(z, t) harmonic (m;n) in spatial basis Bm,n(x,y)
href

p;qðz; tÞ reference harmonic (p;q) (ENH estimator)
kx,ky,kz thermal conductivity along the x-, y- and z-axis
qC volumetric thermal capacity
rm standard deviation related to the measurement noise of

pixels
rm,n standard deviation related to the noise of harmonic

(m;n)
rref

p;q standard deviation related to the noise of reference har-
monic (p;q)csx

ðmÞ estimation of sx performed with harmonic (m;0) (MSEH
estimator)csy

ðnÞ estimation of sy performed with harmonic (0;n) (MSEH
estimator)

/(x,y, t) heat flux density absorbed by the sample due to the la-
ser beam

vm,n(z,p) Laplace transform of temperature field components in
spatial basis Xm(x)Yn(y)

Operators
E[X] expectation value of random vector X
cov(X) covariance matrix of the random vector X
std(Y) standard deviation of random variable Y
hf(x)jg(x)i dot product between function f(x) and g(x)

Estimators
ERH estimation using ratio of harmonics
ENH estimation using normalization of harmonics
MSEH multiple step estimation using harmonics
DEH direct estimation using harmonics
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