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description of the commonly used passive techniques is given. For each of them, we report the values
of the enhancement factor given in the literature. The principal active methods, i.e. methods involving
the supply of external energy, are then detailed. The physical mechanisms leading to heat transfer
enhancement are identified from the analyses published to date. The paper then focuses on the tech-
niques that use periodic deformation of a wall over time. Such a wall deformation enhances heat transfer
by disrupting the boundary layer and simultaneously setting the fluid in motion. The piezoelectric mate-

Keywords:
Heat transfer enhancement
Passive techniques

Active techniques rials that can be implemented to generate the channel wall dynamic deformation are reviewed. As defor-
Nanofluid mation of a wall is generally of low amplitude, the technique is well suited to micro channel systems: (i)
Jet in single-phase configuration, imposing a deformation traveling wave to a micro channel wall is found to
Spray simultaneously enhance heat transfer and set in motion the fluid; (ii) boiling in a narrow space is found to
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Nomenclature

diameter (m)

electric field (Vm™1)

electric field strength (Vm™1)
electrohydrodynamic force (N m—3)
mass flux (kgm2s1)

heat transfer coefficient (W m—2 K1)
remanent polarization (C m~2)

free electric charge density (Cm™3)
temperature (K)

radial distance from stagnation point (m)
axial distance nozzle to plate (m)

N X HS TS O mmm g

Greek symbols

€ fluid permittivity (Fm™!)

p) wavelength (m)

o fluid density (kg m—3)

Oe electrical conductivity (Sm™1)
Subscripts

EHD electrohydrodynamic

ref reference

sat saturation
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1. The challenges, the different techniques of intensification
and the target applications

The intensification of heat transfer is an important societal chal-
lenge in terms of energy saving and materials, sustainable develop-
ment, thermal control, compactness, etc. The fields of application
are numerous. Examples include micro and power electronics, nu-
clear energy, air conditioning, habitat, transportation, space and
aeronautics industries, renewable energy, chemical engineering
and industrial processes, etc.

Heat and mass transfers between a fluid and a wall are influ-
enced by the thermal, mass and hydrodynamics boundary layers.
During the last century, numerous studies were conducted to bet-
ter control and/or to increase parietal heat transfer. Therefore,
abundant literature has accumulated.

To reduce the boundary layers, intensification techniques have
been used but often in a very empirical manner. Thus, the number
of studies (publications and patents) undertaken on the subject has
been constantly growing since the early 1960s. Bergles et al. in
1999 in their literature review [1] mention nearly 4345 publica-
tions on the topic. Intensification techniques are numerous (Webb
[2], for example, identified 13 of them) and can be classified into

two categories: passive and active. Passive techniques mostly con-
sist of increasing the exchange surface area. Initially they were par-
ticularly developed to intensify the transfer between a wall and a
gas. Indeed, the low conductivity of the fluid in the gaseous state
implies a low heat transfer coefficient. This leads to a requirement
for complex surface geometry (surface treatment, fins, etc.) to in-
crease the exchange surface area, and also to disrupt the boundary
layers and thus increase the convective heat transfer coefficient.
Nevertheless, compactness is challenge which is not consistent
with the increase of the heat exchange area. Another way to en-
hance heat transfer, which is the subject of lot of works, is to use
the liquid-vapor phase change. In this case, the complexity of
the geometry used to reduce the boundary layer thicknesses is
not only connected to the wall but also to the distribution of the
phases within the fluid. Although it is now generally accepted that
the use of phase change is one of the most effective ways to inten-
sify heat transfer, the understanding of the phenomena involved
remains incomplete and the approaches are mainly empirical. For
this reason, the control of heat transfers remains rough. Neverthe-
less, when a fluid changes phase on a wall, the heat transfers are
found to be significantly increased. The reason leading to such an
increase in the intensity of heat transfer can be analyzed regarding
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