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a b s t r a c t

The mechanisms contributing to the stability and instability of the liquid–vapour front in a porous
medium are analysed along a bifurcation curve with various combinations of thermal boundary condi-
tions. In the first case, the boundaries above and below the layer of interest are assumed to be isother-
mal. It has been found that due to the competition between thermal and hydrostatic effects, the liquid–
vapour interface may have multiple positions. A two-dimensional linear stability analysis of these basic
states shows that the Rayleigh–Taylor mechanism is the dominant contributor to instability, but that
there are circumstances under which the basic state may be stable. In the second case, a constant heat
flux is imposed at the liquid boundary and a fixed temperature at the vapour boundary. It has been
shown that the competition between the effects of cooling and the viscosity difference between the
fluid phases causes multiple liquid–vapour front positions, whether or not gravity is considered. The
stability analysis of such configurations has shown that along with the Rayleigh–Taylor (buoyancy-dri-
ven) mechanism, a Saffman–Taylor viscous fingering mechanism can also play an important rule in the
transition to instability.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

There are many natural and industrial processes in which liquid
and vapour phases exist in adjacent regions of a porous medium.
Industrial contexts range from drying processes to soil remedia-
tion, while natural contexts include geothermal reservoirs and
other geothermal systems [1–4].

A particularly interesting phenomenon is that, under certain
circumstances, vertically stratified steady states can arise in which
liquid overlies vapour (called ‘water-over-steam’ configurations in
geothermal contexts). Despite the strong buoyancy contrast be-
tween the phases, these steady states may be stable. Their transi-
tion to instability has been shown [5–7] to have interesting
mathematical properties: in particular, it may be ‘spontaneous’ in
the sense that all wavenumbers become unstable simultaneously.
A less thoroughly investigated feature of these configurations is
that for particular boundary conditions multiple positions of the li-
quid–vapour front may be available. In this study we will demon-
strate that this may occur not just for mixed thermal boundary
conditions (as demonstrated by the seminal work of Rubin and
Schweitzer [8]) but also for isothermal boundary conditions when
a fixed pressure drop is imposed across the porous layer. Rubin and
Schweitzer’s [8] work also suggested that the multiplicity and sta-

bility of front positions was directly linked; a second aim of our
study is to demonstrate that this is not, in general, the case. Il’ichev
and Tsypkin [9] showed that the multiple locations of the phase
change front are permeability dependent and suggested that the
middle front position is always unstable.

The complexity of liquid–vapour phase change problems means
that there are useful roles both for comprehensive physical models
of multiphase flow (for example, those that explicitly account for
macroscale two-phase regions) and for more idealised models
which elucidate the fundamental mathematical and physical as-
pects of the problems at the expense of some simplification. The
present study belongs to the second category: we will assume that
vapour and liquid each occupy a single-phase region, and make the
simplest possible thermodynamical assumptions when deriving
boundary conditions at the liquid–vapour front. This reduction ap-
pears to capture much of the essential physics while remaining
mathematically tractable.

In Section 2 we will present the mathematical model we
employ. We will then (Section 3) consider steady states under
various boundary conditions on the system, focusing on the
circumstances under which multiple front positions become avail-
able. In Section 4 we will present a linear stability analysis of
these steady states, paying careful attention to the limiting behav-
iour of long- and short-wave perturbations. Finally, in Section 5
we will consider the physical interpretation and significance of
our results.
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2. Mathematical model

We consider a porous layer of infinite horizontal extension
bounded above and below by two horizontal, much more perme-
able layers. The upper and lower highly permeable layers are filled
either with vapour and liquid, respectively or liquid and vapour,
respectively. In the low-permeability layer there exists a liquid
–vapour front which separates the liquid phase from the vapour
phase. The liquid side is kept cool, whereas the vapour side is
hot. The highly permeable layers will allow us to impose constant
pressures at both sides of the low-permeability layer.

2.1. Governing equations

Generally the differences in density between two phases (liquid
and vapour) is much larger than the variations in density within a
phase. Therefore, we will neglect changes of density within a phase
and will take the density of each phase to be a (different) constant.
The continuity equation for incompressible flow is

r � ti
!¼ 0; where i ¼ liq; vap and ti

!¼ ðui; vi;wiÞ: ð1Þ

Darcy’s equation is taken to hold in each phase,

ti
!¼ � K

li
ðrPi � qi~gÞ; ð2Þ

where ~g ¼ �g ~ex, K is the permeability of the homogeneous med-
ium, l is the dynamic viscosity, q is the density and g is the accel-
eration due to gravity. Regardless of the orientation of the layer, we
take x to be zero on the liquid boundary and to increase towards the
vapour boundary: thus if liquid overlies vapour then g < 0, and if va-
pour overlies liquid then g > 0.

We will use the one-equation model to describe the heat trans-
port in the porous medium assuming local thermal equilibrium,

ðqcÞm;i
@Ti

@t
þ ðqcpÞi ti

!�rTi ¼ r � ðkm;irTiÞ: ð3Þ

where

ðqcÞm;i ¼ ð1�uÞðqcpÞs þuðqcpÞi; km;i ¼ ð1�uÞks þuki:

It can be seen from the above equation that the energy transport is
coupled with the mass transport, which introduces non-linearities.
Further non-linearities will be introduced by the coupling of the
interface position with the heat and mass transport equations.

2.2. Interfacial mass and energy jump conditions

The contact between liquid and vapour means that the pressure
and temperature at the front are related by T = TS(P) or P = PS(T),
where TS and PS are phase change temperature and pressure,
respectively. This relation introduces an inherited non-linearity
associated with phase change problems [2, p. 320]. Il’ichev and
Tsypkin [9] and Straus and Schubert [10] assumed that the temper-
ature/pressure relationship determines the phase change condi-
tion. However, this assumption introduces a complicated
empirical function, and it is not apparent that it is essential to
the physics of instability. In the interest of simplicity, then, we will
assume that a constant temperature and a continuous pressure at
the liquid–vapour interface are prescribed,

at x ¼ S : Pliq ¼ Pvap; Tvap ¼ Tliq ¼ TS; ð4Þ

where S is an arbitrary horizontal position of the liquid–vapour
interface and TS is the prescribed temperature at the interface.
The thermodynamic properties (density, specific heat, viscosity,
thermal conductivity, permeability) of each phase will be assumed
constant but different.

The energy jump condition at the liquid–vapour interface
(x = S(y,z,t)) is

Nomenclature

Latin
_m mass flux

cp specific heat
g acceleration due to gravity
H reciprocal of Stefan number
K permeability
k thermal conductivity
L thickness of the low permeable layer
l wave number
P pressure
Pec Peclet number
q heat flux per unit area
S location parameter of the interface
T temperature
t time
x vertical coordinate
y horizontal coordinate

Greek symbols
� perturbation parameter
j thermal conductivities ratio
k latent heat
l dynamic viscosity
m kinematic viscosity
q density
r spectral parameter
r⁄ asymptotic spectral parameter
H dimensionless temperature
H0 temperature contrast ratio

t fluid flow velocity
u porosity

Dimensionless quantities
C specific heat ratio
E heat capacity ratio
R kinematic viscosity ratio
R1 density ratio
R2 dynamic viscosity ratio
R3 Rayleigh number

Subscripts
L liquid boundary
liq liquid phase
m porous medium
ref reference quantity
S at the phase transition front
s porous skeleton
V vapour boundary
vap vapour phase
0 base state
1 perturbed state

Superscripts
min minimum
⁄ dimensionless quantity
0 base state
1 perturbed state
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