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a b s t r a c t

We consider a theoretical model of a two-phase flow consisting of a nanofluid adjacent to a clear
fluid. A method of obtaining the exact solution to the two-fluid vertical channel flow and convective
heat transfer model is presented. The results constitute a rare case in which completely exact solu-
tions are possible for a nonlinear flow problem involving nanofluids, as the governing equations
are often highly nonlinear. We show rigorously that the nanofluid can modify the fluid velocity at
the interface of the two fluids, and can be used to reduce shear at both the surface of the clear fluid
and the interface of the two fluids. Upon exploring the existence of the exact solutions, we discover
that in some situations there exist two mathematical solution branches, one of which is the physically
relevant solution. We then discuss the behavior of the velocity and thermal profiles with the impor-
tant parameters dictated by the nanoparticles.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The effective thermal conductivity of nanofluids is expected to
enhance the heat transfer properties of a fluid when compared
with convectional heat transfer liquids, which suggests the possi-
bility for the use of nanofluids in advanced nuclear systems
Buongiorno and Hu [1]. Choi [2] was one of the first to use the term
nanofluid to refer to a fluid with suspended nanoparticles. It has
been shown [3,4] showed that the addition of a small amount of
nanoparticles to convectional heat transfer liquids increases the
thermal conductivity of the resulting fluid up to approximately
two times. Buongiorno [5] has pointed out that nanoparticle abso-
lute velocity can be viewed as the sum of the base fluid velocity
and relative velocity (that he calls the slip velocity). Buongiorno
considered in turn seven slip mechanisms: inertia, Brownian mo-
tion, thermophoresis, diffusiophoresis, Magnus effect, fluid drain-
age and gravity settling. Numerous models and methods have
been proposed to study the convective flows of nanofluids (see,
for instance, [6–11]).

Recently Malashetty et al. [12,13] studied the free convective
flow field and heat transfer of conducting two fluid flows in vertical
and inclined channels. Van Gorder et al. [14] then extended this
model in order to obtain a model which includes a nanofluid layer
in such a two-fluid model. The framework was theoretical, as there

are no known experimental two-layer fluid studies with nanopar-
ticles. Hence, the results are mainly of theoretical interest. One
possible application would be to flows in micro channels, where
it would potentially be efficient to employ nanofluids. Further-
more, such results are valid for steady flows. Indeed, turbulent
flows would induce mixing and other undesired behaviors. Hence,
this framework would not be useful in describing such phenome-
non as two-layer turbulent flows, or two-layer flows with mixing:
a more complicated model would be required to take into account
such behaviors.

In light of the numerical results of Van Gorder et al. [14], in
the present paper we provide an exact solution to the two-fluid
problem. Such a result not only verifies the numerical findings of
Van Gorder et al. [14], but also is a rare instance of an exact
solution to a nonlinear fluid flow problem. We start with a re-
view of the physical problem in Section 2. In Section 3, we out-
line the mathematical problem which must be solved. In
Section 4, we solve the nonlinear boundary value problem in
general, obtaining an exact solution form which depends on
coefficients which are in turn determined by model parameters.
Using the obtained exact solutions, in Section 5 we discuss how
to obtain physical parameters such as the Nusselt number and
shear stress from the exact solutions, and we highlight certain
results of interest. In Section 6, we offer conclusions which
help to frame our results within the context of the physical
problem. The results are discussed in the context of related stud-
ies [15–21].
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2. Physical formulation of the problem

For sake of completeness, we provide the problem formulation
given in [14]. The physical configuration considered in this study is
as shown in Fig. 1. The region �h2 6 y 6 0 is occupied by a viscous
incompressible nanofluid and the region 0 6 y 6 h1 is occupied by
a viscous, incompressible clear fluid (Newtonian). The two walls of
the channel are held at different temperatures Tw1 and Tw2 with
Tw1 > Tw2 . The flow in both the regions is assumed to be steady,
laminar, fully developed, and the fluid thermo-physical properties
are assumed to be constant except the density variation in the
buoyancy term of the momentum equation (in both regions): This
is called the Overbeck–Boussinesq approximation. Further, the flu-
ids in both the regions are assumed to be driven by a common
pressure gradient and the temperature difference at the walls.
The basic two-fluid model of this situation (in the absence of non-
ofluids) was outlined in Malashetty et al. [12,13]. The model, as gi-
ven in Van Gorder et al. [14] is

Region I (Non-dimensionalized):

d2u1

dy2 � P þ k1h1 ¼ 0; ð2:1Þ

1
Pr

d2h1

dy2 þ d1h1 ¼ 0; ð2:2Þ

Region II (Non-dimensionalized):

d2u2

dy2 � h2mP þ h2bmnk2h2 ¼ 0; ð2:3Þ

1
a

1
Pr

d2h2

dy2 þ Nb
dh2

dy
d/
dy
þ Nt

dh2

dy

� �2

þ d2h2 ¼ 0; ð2:4Þ

d2/

dy2 þ
Nt

Nb

d2h2

dy2 ¼ 0: ð2:5Þ

In order to account for the nanoparticle concentration, note that
the form of the coupled Eqs. (2.4) and (2.5) accounting for the
nanoparticle concentration are taken to follow from the theory
outlined in Buongiorno [5]. In the above equations, the parameters
k1, k2, Pr, Nb, Nt, d1 and d2 are the mixed convection parameters
(k1,k2), Prandtl number, Brownian motion parameter, thermophe-
rosis parameter, and heat source/sink parameter (in Regions I
and II) respectively, and are defined by

Nomenclature

Cp specific heat at constant pressure
C nano particle volume fraction
Cw nano particle volume fraction at the left channel
DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
h ratio of the width of the two regions
hi width of the region I and II
g acceleration due to gravity
Gr Grashof number
K ratio of thermal conductivities
m ratio of viscosities
n ratio of densities
Nb Brownian motion parameter
Nt thermophoresis parameter
Pr Prandtl number
p pressure
P non-dimensional pressure gradient
Qi heat generation/absorption coefficient of the region I

and II
Re Reynolds number
T temperature
Tw1 temperature at the right wall

Tw2 temperature at the left wall
ui velocities in the x-component of the regions I and II
~u1 average velocity
x,y space coordinates

Greek letters
ai thermal diffusivity of the regions I and II
a ratio of the thermal diffusivity
bi coefficient of thermal expansion of the regions1 and 2
b ratio of the coefficient of thermal expansion
li viscosities of the regions I and II
qi densities of the regions I and II
hi non-dimensional temperatures of the regions I and II
k mixed convection parameter
/ non-dimensional nanoparticle volume fraction
s heat capacity ratio
mi kinematic viscosities of regions I and II
di non-dimensional internal heat generation/generation
⁄ dimensionless quantity

Subscripts
1 and 2 refer to quantities for regions I and II, respectively.

Fig. 1. Geometry of the problem. Region I contains the clear Newtonian fluid, while
Region II contains the fluid with nanoparticles. The flow is vertical, directed along
the x axis (the direction, either toward positive or negative x, will depend on the
fluid properties). The velocity and thermal properties vary in y, but are constant in x
(as the flow is assumed to be fully developed).
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