FISEVIER

Contents lists available at SciVerse ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Fully developed forced convective heat transfer in an annulus partially filled with metallic foams: An analytical solution

Z.G. Qu*, H.J. Xu¹, W.Q. Tao²

Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

ARTICLE INFO

Article history:
Received 12 February 2012
Received in revised form 18 July 2012
Accepted 18 July 2012
Available online 31 August 2012

Keywords: Analytical solution Metallic foam Two-equation model Porous-fluid interface

ABSTRACT

An analytical solution for fully developed forced convective heat transfer in an annulus partially filled with metallic foam was proposed. The inner surface attached with an annular metallic foam layer was exposed to constant heat flux while the outer surface was adiabatic. In the metallic foam region, the Brinkman–Darcy equation was used to describe the fluid flow and the thermal non-equilibrium model was employed to establish the heat transfer equations. At the porous-fluid interface, no-slip coupling conditions were utilized to couple flow and heat transfer of the porous and open regions. A closed-form analytical solution was obtained for velocity and temperature profiles. The explicit form of friction factor and the Nusselt (Nu) number were also provided. The solutions were validated by two extreme cases: the empty annulus and the annulus fully filled with metallic foam. The effects of key parameters on friction factor, Nu number, and $j/j^{1/3}$ were examined. The relationship between flow heterogeneity and heat transfer was also discussed by introducing the flow heterogeneity coefficient. The porosity, pore density, and foam thickness for engineering applications were recommended. In the present analytical solution, a benchmark was also established for improving discretizing schemes in numerical works.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The attractive thermal performance of open-cell metallic foam gives it great applied potential as catalyst support, burn rate enhancer for solid propellants, thermal storage, solar collector, fuel cell, electronics cooler, and for use in the aerospace and defense industries [1–3]. In particular, the light weight, high strength, high surface area density, high solid thermal conductivity, and good flow mixing capability of open-cell metallic foam make it effective for implementing various types of compact heat exchangers and heat sinks, which provides scientific problems for convective heat transfer.

Numerous works for flow and heat transfer in several common geometries fully filled with porous media have been published [2–6]. Using the Brinkman–Darcy and two-equation models, Lu et al. [2] presented an analytical solution for a metal–foam fully filled inner-tube while Zhao et al. [3] analytically investigated the metal–foam fully filled annulus for tube-in-tube heat exchangers. Du et al. [4] conducted a numerical study on parallel flow in metal–foam fully filled double-pipe heat exchangers using

the two-equation model. Lee and Vafai [5] presented the analytical solution for forced convection heat transfer in parallel-plate channel fully filled with porous media and pointed out that the two-equation model is more accurate than the one-equation model for determining the large difference between solid and fluid thermal conductivities. Yang and Vafai [6] analytically studied a similar problem, but with both the uniform heat flux and uniform wall temperature boundary conditions. Overall, heat transfer in a duct fully fitted with porous media can be substantially enhanced. However, the corresponding pressure loss is too high, generally three to four orders of magnitude higher than that of the empty duct or more. This condition impedes the application of metallic foams with excellent thermal performance for most engineering cases requiring low pressure loss.

To enhance heat transfer with less pressure drop penalty, flow and heat transfer in a duct partially filled with porous media have been investigated to some extent [7–11]. Ming et al. [7] carried out a numerical study on heat transfer in a tube with a porous core and found that the partly porous duct may be applied for heat transfer enhancement. Poulikakos and Kazmierczak [8] analytically studied flow and heat transfer in two geometries, a parallel-plate channel and a circular tube, which were both partially filled with porous media. Gong et al. [9] performed similar work for the porous media partially filled tube by considering the thermal dispersion effect. Chikh et al. [10] did an analytical treatment of forced convective heat transfer in an annulus partially filled with porous media. Vafai

^{*} Corresponding author. Tel./fax: +86 29 82668036.

E-mail addresses: zgqu@mail.xjtu.edu.cn (Z.G. Qu), hjxu.1015@stu.xjtu.edu.cn (H.J. Xu), wqtao@mail.xjtu.edu.cn (W.Q. Tao).

¹ Tel./fax: +86 29 82668036.

² Tel.: +86 29 82669106; fax: +86 29 82668036.

```
Nomenclature
           specific surface area, m<sup>-1</sup>
                                                                                                   dimensionless factor in Eq. (19b)
                                                                                       s
a_{\rm sf}
            area. m<sup>2</sup>
                                                                                                   dimensionless factor in Eq. (19b)
Α
            specific heat, J \cdot kg^{-1} \cdot K^{-1}
                                                                                                   temperature, K
С
                                                                                       T
           fiber diameter, m, d_f = 1.18\sqrt{(1-\varepsilon)/(3\pi)}(1-\exp(-2\pi i \pi))
                                                                                                   velocity, m\cdot s^{-1}
d_{\rm f}
                                                                                                   mean velocity, m \cdot s^{-1}
            ((\epsilon - 1)/0.04))
                                                                                       u_{\rm m}
           pore diameter, m, d_p = 0.0254/\omega
                                                                                                   dimensionless velocity
d_{\rm p}
Dα
            Darcy number
                                                                                       х
                                                                                                   axial position, m
           friction factor
           heat transfer coefficient, W \cdot m^{-2} \cdot K^{-1}
h
                                                                                       Greek symbols
           local convective heat transfer coefficient, W\cdot m^{-2}\cdot K^{-1}
h_{\rm sf}
                                                                                                   porosity
K
            permeability, m<sup>2</sup>
                                                                                                   dimensionless position of the annulus regulated from 0
                                                                                       η
           thermal conductivity, W\cdot m^{-1}\cdot K^{-1}
k
           thermal conductivity ratio, k_r = k_f/k_s
                                                                                       \theta
k_{\rm r}
                                                                                                   dimensionless temperature
                                                                                                   dynamic viscosity, kg \cdot m<sup>-1</sup> \cdot s<sup>-1</sup>
                                                                                       μ
           unit vector normal to the porous-fluid interface pointing
n_{p,f}
                                                                                                   flow heterogeneity coefficient
            to the fluid side
                                                                                                   density, kg · m<sup>-3</sup>
                                                                                       ρ
Nu
           Nusselt number
           pressure, N \cdot m^{-2}
                                                                                       φ
                                                                                                   polar angle, rad
                                                                                                   pore density, PPI (pores per inch)
                                                                                       \omega
           dimensionless pressure drop
           Prandtl number
Pr
           heat flux, W\cdot m^{-2}\,
                                                                                       Subscripts
q
                                                                                                   bulk
           mass flow, kg \cdot s<sup>-1</sup>
q_{\rm m}
                                                                                                   effective
                                                                                       e
           radius, m
                                                                                                   fluid
                                                                                       f
           inner radius, m
r_1
                                                                                                   interface
            outer radius, m
r_2
                                                                                                   mean
           interfacial radius, m
           dimensionless radius, R = r/r_1
                                                                                                   porous
R
           dimensionless outer radius, R_2 = r_2/r_1
                                                                                                   ratio
R_2
                                                                                       r
                                                                                                   solid
           dimensionless interfacial radius, R_i = r_i / r_1
R_{i}
                                                                                                   wall
           Reynolds number, Re = \rho_f u \cdot 2r_0/\mu_f
Re
           permeability Reynolds number, Re_K = \rho_f u \sqrt{K}/\mu_f
Re_{K}
```

and Thiyagaraja [11] obtained perturbation solution for three kinds of flow and heat transfer: porous-fluid interface, porous-solid interface and the interface of two porous media with different porosities. All of the works mentioned [7–11] were performed using one-equation model for duct partially filled with porous media.

According to Lee and Vafai [5], the two-equation model is more accurate than the one-equation model for metallic foams with high solid thermal conductivities, which calls for interfacial coupling conditions for non-equilibrium heat transfer in a foam-fluid system. The implementation of the two-equation model in a system with a porous-fluid interface increases the number of variables, temperature equations, and interfacial coupling conditions, making the analytical solution more complex for partially filled channels or ducts. To the authors' knowledge, only a few numerical [12-14] or theoretical [15] papers have been published for non-equilibrium heat transfer in a porous-fluid system. For nonequilibrium heat transfer in a porous-fluid system, Xu et al. [16,17] performed an investigation on the configurations of parallel-plate channels and single-pipes partially filled with metallic foams, and obtained closed-form analytical solution results. Yang and Vafai [18] presented a thermal condition for forced convective heat transfer in a tube with a porous core. For a system with both porous media and clear fluid, the interfacial coupling conditions can be categorized into two types: slip and no-slip conditions [19,20]. Alazmi and Vafai [21] found that the velocity and temperature profiles for slip and no-slip interfacial conditions are quite close, and the no-slip coupling condition is well accepted in the analytical process.

The annular duct is a common geometry for heat exchangers or heat sinks. No analytical work for non-equilibrium forced

convective heat transfer using annular duct partially filled with metallic foams has been published in open literature. The current study aims to investigate analytically the fluid flow and heat transfer in metal-foam partially filled annulus. Normalized analytical solution on the effects of important parameters on flow and heat transfer are comprehensively analyzed and presented together with some useful proposals for practical applications.

2. Mathematical model

2.1. Physical description

These configuration details for metallic foam partially filled annulus are shown in Fig. 1. The annulus with inner radius (r_1) and outer radius (r_2) is partially filled with metallic foam. The metallic foam with outer-edge radius (r_i) is sintered on the inner wall and extends toward the outer wall. The inner wall of the duct is subjected to a constant heat flux (q_w) while its outer wall is adiabatic. Single-phase fluid with mean velocity (u_m) flows through the annular duct, removing heat imposed on the inner wall.

In this work, the fully developed laminar flow and heat transfer for incompressible fluid with constant thermal-physical properties are assumed while natural convection and thermal radiation are both disregarded. The metallic foam employed in the annular duct is both homogeneous and isotropic.

2.2. Governing equations

Based on the assumptions, the momentum and energy equations in the foam and fluid regions of the metal-foam partially

Download English Version:

https://daneshyari.com/en/article/7059290

Download Persian Version:

https://daneshyari.com/article/7059290

<u>Daneshyari.com</u>