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a b s t r a c t

The present study is concerned with the recovery of an unknown initial condition for a one-dimensional
heat conduction equation by using only the usual two boundary conditions of the direct problem for heat
equation. The algorithm assumes a function for the unknown initial condition and derives an inverse
problem for estimating a spatially-dependent heat source F(x) in Tt(x, t) = Txx(x, t) + F(x). A self-adaptive
Lie-group shooting method, namely a Lie-group adaptive method (LGAM), is developed to find F(x),
and then by integrations or by solving a linear system we can extract the information for unknown initial
condition. The new method possesses twofold advantages in that no a priori information of unknown
functions is required and no extra data are needed. The accuracy and efficiency of present method are
confirmed by comparing the estimated results with some exact solutions.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider an inverse problem of recovering an
unknown initial condition for a one-dimensional heat conduction
equation with only some minimal boundary conditions given:

utðx; tÞ ¼ uxxðx; tÞ; 0 < x < ‘; t > 0; ð1Þ
uð0; tÞ ¼ u0ðtÞ; ð2Þ
uð‘; tÞ ¼ u‘ðtÞ; ð3Þ

where the initial condition is absent as an unknown function of x,
i.e.,

uðx;0Þ ¼ f ðxÞ ¼ ? ð4Þ

For compatibility we require that f(0) = u0(0), and f(‘) = u‘(0).
Besides the above two boundary conditions in Eqs. (2) and (3) for
a typical direct problem of heat equation, the present method
which will be developed in this paper does not need other data
to recover f(x).

In general, there are two classes of backward heat conduction
problem (BHCP). For the first class it is usually by specifying a tem-
perature distribution inside the domain of 0 6 x 6 ‘ at a certain
instant of time t = tf, and one wants to recover the initial tempera-
ture. Another class is that when there is no interior information

about the temperature and only some boundary data are available
one also attends to recover the initial temperature. However, in
this case the existence of a solution for the inverse problem is
not guaranteed [1].

In order to calculate the BHCP, there have appeared some pro-
gresses in this issue, including the boundary element method [2],
the iterative boundary element method [3,4], the Tikhonov regu-
larization technique [5,6], the operator-splitting method [7], the
lattice-free high-order finite difference method [8], the contraction
group technique [9], the fundamental solutions method [10,11],
the third order mixed-derivative regularization technique [12],
the Fourier regularization method [13], the three-spectral regular-
ization methods [14], the regularization of Fredholm integral equa-
tion method [15], and the fictitious time integration method [16].
The method developed by Liu [9] was further developed by Xiong
et al. [17], of which the stepsize used in the spatial finite difference
is deemed as a regularization parameter. Chiwiacowsky and de
Campos Velho [18] have given a review of the numerical solutions
of the BHCP. Clark and Oppenheimer [19] and Ames et al. [20] have
used a quasi-reversibility method to approximate the BHCP. The
numerical implementation of the quasi-reversibility together with
a time-direction Lie-group shooting method has been carried out
by Chang et al. [21], which revealing a high performance for solv-
ing the BHCP.

Let

Tðx; tÞ ¼ uðx; tÞ � f ðxÞ þ 1; ð5Þ
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where f(x) is an unknown function of initial temperature to be
determined. From Eqs. (1)–(4) we can derive

Ttðx; tÞ ¼ Txxðx; tÞ þ FðxÞ; ð6Þ
Tð0; tÞ ¼ F0ðtÞ ¼ u0ðtÞ � u0ð0Þ þ 1; ð7Þ
Tð‘; tÞ ¼ F‘ðtÞ ¼ u‘ðtÞ � u‘ð0Þ þ 1; ð8Þ
Tðx;0Þ ¼ 1; ð9Þ

where F(x) = f
00
(x) is viewed as an unknown and spatially-dependent

function of heat source.
In order to recover f(x), Tadi [22] required overspecified bound-

ary heat flux:

uxð0; tÞ ¼ q0ðtÞ; uxð‘; tÞ ¼ q‘ðtÞ:

As compared with the above data required by Tadi [22], our require-
ment of measured data is minimal.

Mathematically speaking, Eqs. (6)–(9) form an underdeter-
mined system, because both F(x) and T(x, t) are unknown functions.
For the inverse problem of heat source identification there were
many studies as can be seen from the papers by Cannon and
Duchateau [23] for identifying F(u), and Savateev [24] and Boruk-
hov and Vabishchevich [25] for identifying F(x, t) with additive or
seperable space and time. Many researchers sought the heat source
as a function of only space or time, for example, Farcas and Lesnic
[26], Ling et al. [27], and Yan et al. [28].

Liu [29] and Yeih and Liu [30] have developed a two-stage
Lie-group shooting method to estimate the time-dependent heat
source. To the best knowledge of the author, in the open literature
of inverse problems there has no researcher to discuss the possibil-
ity for estimating unknown heat source without needing of an
extra measurement of data. We will develop a novel self-adaptive
Lie-group shooting method, namely the Lie-group adaptive meth-

od (LGAM) for the inverse problem of heat source identification gov-
erned by Eqs. (6)–(9), as well as the recovery of initial condition in
the BHCP governed by Eqs. (1)–(4).

Liu [31–33] has extended the group preserving scheme (GPS)
developed previously by Liu [34] for ODEs to solve the boundary
value problems (BVPs). In the construction of the Lie group method
for the calculations of BVPs, Liu [31] has introduced the idea of
one-step GPS by utilizing the closure property of the Lie group,
and hence, the new shooting method has been named the Lie-
group shooting method (LGSM). After that, Liu [35] has used this
concept to establish a one-step estimation method to estimate
the temperature-dependent heat conductivity, and then extended
the Lie-group method to estimate the thermophysical properties
of heat conductivity and heat capacity [36–38]. The Lie-group
method possesses a great advantage than other numerical methods
due to its group structure, and it is a powerful technique to solve
the inverse problems of parameters identification [39].

Liu and Atluri [40] have made a breakthrough for solving the
Calderón’s inverse problem by an effective combination of the
Lie-Group Adaptive Method (LGAM) and the finite-strip technique.
The LGAM views the Lie-group equation developed in the LGSM as
a two-point Lie-group equation, describing a nonlinear relation be-
tween the state quantities defined at two different times or at two
different positions of 1-D space. In this view we do not have a real
target in the problem, and thus we can freely use the Lie-group
equation as a supplemented equation, which is inherent in the
ODEs, and thus we can solve many inverse problems by an itera-
tion process. Very interesting, Liu [41] has applied the Lie-group
adaptive method (LGAM) to identify the rigidity function of wave
propagation problems without resorting on other data, besides
those needed for the direct wave problem.

Nomenclature

A augmented matrix
a, b coefficients defined in Eqs. (29), (32), (38) and (50)
Cj a measure of convergence speed
f n-dimensional vector field
f̂ :¼ f ð̂t; bTÞ
f̂ i the ith component of f̂
f(x) unknown initial temperature function
F0(t) left-boundary function
F‘(t) right-boundary function
F :¼ f̂=kT̂k
F(x) unknown heat source function
Fi :¼F(xi)
g n + 1-dimensional Minkowski metric
G an element of Lorentz group
Gi, i = 1, . . . ,K elements of Lorentz group
G(r) an element of Lorentz group
G(tf) an element of Lorentz group
G0

0 the 00th component of G
In n-dimensional unit matrix
‘ length of rod
k�k Euclidean norm
Mnþ1 n + 1-dimensional Minkowski space
n number of interior grid points
q0(t) left boundary flux
q‘(t) right boundary flux
r weighting factor
S :¼tfkTf�T0k
SOo(n,1) n + 1-dimensional Lorentz group
so(n,1) the Lie algebra of SOo(n,1)
t time
tf final time

t̂ :¼(1�r)tf

Dt time stepsize
T temperature
T temperature vector of Ti

T0 initial temperature vector
Tf temperature vector at final time tfbT :¼rT0 + (1�r)Tf

Ti(t) :¼T(xi, t)bT i the ith component of bT
u0(t) left boundary temperature
u‘(t) right boundary temperature
x space variable
xi discretized coordinate of x
Dx mesh size of x
X n + 1-dimensional augmented vector
Xk numerical value of X at the kth time step
X0 The value of X at initial time
Xf The value of X at final time tf

Z :¼exp (S/g)

Greek symbols
g coefficient defined in Eq. (35)
e convergence criterion
h intersection angle of Tf�T0 and T0

Subscripts and superscripts
i index
K index
t transpose
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