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a b s t r a c t

The objective of this work is to introduce the use of integral transformed temperature measured data for
the solution of inverse heat transfer problems, instead of the common local transient temperature mea-
surements. The proposed approach is capable of significantly compressing the measured data through the
integral transformation, without losing the information contained in the measurements and required for
the solution of the inverse problem. The data compression is of special interest for modern measurement
techniques, such as the infrared thermography, that allows for fine spatial resolutions and large frequen-
cies, possibly resulting on a very large amount of measured data. In order to critically address the use of
integral transformed measurements, we examine in this paper the simultaneous estimation of spatially
variable thermal conductivity and thermal diffusivity in one-dimensional heat conduction within heter-
ogeneous media. The direct problem solution is analytically obtained via integral transforms and the
related eigenvalue problem is solved by the Generalized Integral Transform Technique (GITT). The inverse
problem is handled with Bayesian inference by employing a Markov Chain Monte Carlo (MCMC) method.
The unknown functions appearing in the formulation are expanded in terms of eigenfunctions as well, so
that the unknown parameters become the corresponding series coefficients. Such projection of the func-
tions in an infinite dimensional space onto a parametric space of finite dimension also permits that sev-
eral quantities appearing in the solution of the direct problem be analytically computed. Simulated
measurements are used in the inverse analysis; they are assumed to be additive, uncorrelated, normally
distributed, with zero means and known covariances. Both Gaussian and non-informative uniform distri-
butions are used as priors for demonstrating the robustness of the estimation procedure.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of diffusion problems in heterogeneous media
involves formulations with spatial variations of the thermophysi-
cal properties in different ways, such as large scale variations in
functionally graded materials (FGM), abrupt variations in layered
composites, and random variations due to local concentration fluc-
tuations in dispersed phase systems [1–6]. For instance, composite
materials have been providing engineers with increased opportu-
nities for tailoring structures to meet a variety of property and per-
formance requirements. As the composite material morphology in
applications presents endless possibilities due to design and man-
ufacturing processes, the characterization of their physical proper-
ties is to be made almost case to case [7–13].

The accurate representation of the heat conduction phenomena
requires a detailed local solution of the temperature distribution,
generally with the aid of discrete numerical solutions with

sufficient mesh refinement and computational effort and/or
semi-analytical approaches for specific or simplified functional
forms. Analytical solutions of linear diffusion problems have been
analyzed and compiled in [14], where seven different classes of
heat and mass diffusion formulations are systematically solved
by the classical Integral Transform Method. The obtained formal
solutions are applicable over a very broad range of problems in
heat and mass transfer, in part illustrated in the referred compen-
dium. Later on, the classical integral transform approach gained a
hybrid numerical–analytical implementation and is in general re-
ferred to as the Generalized Integral Transform Technique (GITT)
[15–21], offering more flexibility in handling non-transformable
problems, including, among others, the analysis of nonlinear diffu-
sion and convection–diffusion problems.

The usefulness of such direct problem solutions is nevertheless
limited by the precise knowledge of the corresponding thermo-
physical properties and boundary condition coefficients that are
fed in the corresponding models, and quite often need to be deter-
mined by the appropriate inverse problem analysis [22–29].
Among the various available solution techniques of inverse
problems [30–34], a fairly common approach is related to the

0017-9310/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijheatmasstransfer.2010.11.042

⇑ Corresponding author.
E-mail addresses: cpncotta@hotmail.com (C.P. Naveira-Cotta), cotta@mecanica.

coppe.ufrj.br (R.M. Cotta), helcio@mecanica.coppe.ufrj.br (H.R.B. Orlande).

International Journal of Heat and Mass Transfer 54 (2011) 1506–1519

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.11.042
mailto:cpncotta@hotmail.com
mailto:cotta@mecanica. coppe.ufrj.br
mailto:cotta@mecanica. coppe.ufrj.br
mailto:helcio@mecanica.coppe.ufrj.br
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.11.042
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


minimization of an objective function that usually involves the
quadratic difference between measured and estimated dependent
variables, such as the least squares norm, or its modified versions
with the addition of regularization terms. Although very popular
and useful in many situations, the minimization of the least
squares norm is a non-Bayesian estimator. A Bayesian estimator
is basically concerned with the analysis of the posterior probability
density, which is the conditional probability of the parameters gi-
ven the measurements, while the likelihood is the conditional
probability of the measurements given the parameters [33]. If we
assume the parameters and the measurement errors to be inde-
pendent Gaussian random variables, with known means and
covariance matrices, and that the measurement errors are additive,
a closed form expression can be derived for the posterior probabil-
ity density. In this case, the estimator that maximizes the posterior
probability density can be recast in the form of a minimization
problem involving the maximum a posteriori objective function.
On the other hand, if different prior probability densities are as-
sumed for the parameters, so that the Posterior Probability Distri-
bution may not allow an analytical treatment, Markov Chain
Monte Carlo (MCMC) methods are required to draw samples of
all possible parameters, and thus inference on the posterior prob-
ability becomes inference on the samples.

In this work we use Bayesian inference for the estimation of
spatially variable equation and boundary condition coefficients in
diffusion problems, by employing the method of Markov Chain
Monte Carlo (MCMC) [33,35–38]. The Metropolis-Hastings
algorithm is employed for the sampling procedure [39,40], imple-
mented in the Mathematica platform [41]. This sampling procedure
used to recover the posterior distribution is in general the most

expensive computational task in solving an inverse problem by
Bayesian inference, since the direct problem is calculated for each
state of the Markov Chain. In this context, the use of a fast, accurate
and robust computational implementation of the direct solution
[42] is extremely important. Thus, the integral transformation ap-
proach discussed above becomes very attractive for the combined
use with the Bayesian estimation procedure, since all required
expressions in the method are analytically obtained at once by
symbolic computation and the single numerical repetitive task is
the solution of an algebraic matrix eigenvalue problem [42–44].
Also, instead of seeking the function estimation in the form of a se-
quence of local values for the variable coefficients, an alternative
approach is utilized based on the eigenfunction expansion of the
functions to be estimated [42]. As a result, the solution of the in-
verse problem is performed in a finite dimensional space of param-
eters, involving the corresponding series coefficients.

The main contribution of the present work is the analysis of the
inverse problem in the transformed temperature field, instead of
employing the directly measured temperature data. The experi-
mental temperature values at each time are integral transformed
along the spatial domain to yield transformed temperature mea-
surements of increasing order, which is the eigenvalue order of
the auxiliary problem used in the transformation. This procedure
is particularly advantageous when a substantial amount of exper-
imental measurements are available, such as in thermographic
sensors, thus permitting a remarkable data compression through
the integral transformation process, without discarding any of
the available measurements.

In order to demonstrate the applicability of the proposed esti-
mation approach, a simulated experiment is used, which employs

Nomenclature

a coefficient in time lag function of applied heat flux,
Eq. (24c)

b coefficient in time lag function of applied heat flux,
Eq. (24c)

cp specific heat, Eq. (1.a)
d(x) linear dissipation operator coefficient, Eq. (3.a)
f(t) time lag function in applied heat flux, Eq. (24a)
heff(x) effective heat transfer coefficient, Eq. (1.a)
k(x) space variable thermal conductivity, Eq. (1.a)
Lx plate length
Lz plate thickness
M truncation order in eigenvalue problem expansion
Mn normalization integrals in auxiliary eigenvalue

problem
NT truncation order in temperature expansion
Nw, Nk truncation orders in coefficients expansions, w(x)

and k(x), respectively
NFk, NFw, NFd number of parameters to be estimated in each fil-

tered solution, wf(x), kf(x) and df(x), respectively
NPk, NPw, NPd number of parameters to be estimated in each

parametrization, w(x), k(x) and d(x), respectively
Nf number of parameters to be estimated in time

behavior of the applied heat flux, f(t)
NP number of parameters to be estimated, Eq. (20b)
Nx number of measurements along the spatial domain

(sensors)
Nt number of measurements in time
Nm total number of measurements
Ni normalization integrals in original eigenvalue prob-

lem
P(x, t) source term, Eq. (3.a,g)
qw(x, t) applied heat flux, Eq. (1.a)

qinf heat flux dissipated from electrical resistance, Eq.
(24.b)

t time variable
Tm(x, t) temperature distribution
w(x) thermal capacity, Eq. (3.a)
wf(x) filter for thermal capacity expansion
x space coordinate
Y vector of measurements
P vector of unknown parameters
Pw, Pk, Pd, Pf vector of unknown parameters for w(x), k(x), d(x)

and f(t) respectively
T vector of estimated temperatures
W covariance matrix of the measurement errors

Greek symbols
c parameter in heat flux or linear dissipation coeffi-

cient spatial variation
e emissivity
k eigenvalues of the auxiliary problem
l eigenvalues of the original problem
w eigenfunctions of the original problem
X eigenfunctions of the auxiliary problem
q density

Subscripts and Superscripts
i, n, m order of eigenquantities
– integral transform
� normalized eigenfunction
d dispersed phase (filler) properties
f filtering function in the coefficient expansion
m matrix phase properties
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