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a b s t r a c t

A model for double-diffusive convection in an anisotropic porous layer with a constant throughflow is
explored, with penetrative convection being simulated via an internal heat source. Both linear instability
and nonlinear stability analyses are performed to assess the suitability of linear theory to predict the
destabilisation of the throughflow. It is shown that due to oscillatory instability modes, there are three
distinct regions, where increasing the ascending throughflow from rest actually has a stabilising effect,
before following the standard destabilisation and stabilisation pattern. This is a previously unobserved
phenomenon. The agreement between the linear and nonlinear thresholds is substantial when a small
descending throughflow is introduced, although this does deteriorate for ascending throughflow.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The phenomenon of double-diffusive convection appears in
numerous physical problems such as the spreading of pollutants,
contaminant transport in saturated soil, underground disposal of
nuclear wastes, and food processing, and has thus received extensive
exploration in the literature, cf. [1]. The introduction of a through-
flow leads to further important applications in hydrothermal porous
systems [2], cloud physics [3,4], and in many industrial processes
[1,5]. Recent research activity on throughflow has included [6–13],
which have underlined the significant impact the presence of a
throughflow has on the stability of a fluid/porous layer.

The motivation of this paper is to investigate both ascending,
and descending, throughflow for double-diffusive convection in a
fluid filled anisotropic porous layer with an internal heat source.
Shivakumara and Khalili [10] studied this problem without the
presence of an internal heat source, which we are introducing to
allow penetrative convection to occur. Penetrative convection oc-
curs when part of the layer has a tendency to be unstable which
will then induce instability in the rest of the layer. Hill et al. [8]
investigated a porous layer with throughflow, where the density
is a nonlinear function of temperature to incorporate penetrative
convection, and found that the stability behavior was significantly
different for ascending and descending throughflow. This is in con-
trast to the case where no penetrative convection occurs [10].

Furthermore, the stability thresholds given in Hill et al. [8] are
entirely monotonic, whereas in double-diffusive systems

oscillatory behavior is usually present, which further motivates
the exploration of this system. In fact, this paper shows that due
to this behaviour there are three distinct regions, where increasing
the ascending throughflow from rest has a stabilising effect, before
following the standard destabilisation and stabilisation pattern
(see e.g. [10]). This result has not been observed previously in
the literature and is not present in the absence of an internal heat
source [10]. In this paper we also consider the case where the por-
ous medium is anisotropic, with constant anisotropic linearly layer
dependent permeability [14].

When adopting a linear analysis approach, the perturbation to
the steady state is assumed to be small, and so nonlinear terms
in the governing set of partial differential equations are discarded.
It has been proved that linear analysis often provides little
information on the behavior of the nonlinear system [15], so in
such cases only instability can be deduced from the linear thresh-
olds, as any potential growth in the nonlinear terms is not
considered.

In order to establish stability results we turn our attention to
the highly adaptable energy method [15]. Nonlinear energy meth-
ods are particular useful as they delimit the parameter region of
possible subcritical instability (the region between the linear insta-
bility and nonlinear stability thresholds) [16]. Hence, quantifying
the discrepancy between these two thresholds makes it possible
to provide an assessment of the suitability of linear theory to pre-
dict the de-stabilisation of the throughflow.

The solutions of these two theories reduce to generalised eigen-
value problems which have been derived numerically using the
Chebyshev-tau technique [17,18]. Standard indicial notation is
employed, and fixed boundary conditions are taken throughout.
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2. Formation of the problem

Let us consider a water saturated porous layer Xp bounded by
two horizontal parallel planes. Let d > 0, Xp = R2 � ð0; dÞ and Oxyz
be a cartesian frame of reference, with standard indicial notation
employed throughout the paper. The Darcy equation, for variable
permeability k(z) = k0s(z), is assumed to govern the fluid motion
in the layer, such that

0 ¼ �p;i �
l

kðzÞv i � bigq; ð1Þ

where vi and p are velocity, and pressure, b = (0,0,1), g is accelera-
tion due to gravity, l is the dynamic viscosity of the fluid and k0 is
the reference permeability. Denoting T to be the temperature, and C
to be the concentration of the dissolved species, the density q(T,C)
is given by

qðT;CÞ ¼ q0ð1� atðT � T0Þ þ acðC � C0ÞÞ;

where q0, T0, and C0 are reference values of density, temperature
and concentration respectively, and at and ac are the coefficients
for thermal and solutal expansion.

Eq. (1) together with the incompressibility condition, and the
equations of energy and solute balance, yield the following system
of governing equations

0 ¼ �p;i �
l

k0sðzÞv i � bigq0ð1� atðT � T0Þ þ acðC � C0ÞÞ;

v i;i ¼ 0;
1
M

T ;t þ v iT ;i ¼ jtr2T þ Q ;

/C;t þ v iC ;i ¼ jcr2C:

ð2Þ

In these equations / is the porosity and jc is the solute diffusivity,
with

ðq0hÞm ¼ ð1� /Þðq0hÞs þ /ðq0hpÞf ;

where hp is the specific heat of the fluid, and h is the specific heat of
the solid, with the subscripts f, s, and m referring to the fluid, solid
and porous components of the medium, respectively. Given that j is
the thermal diffusivity, the remaining terms of system (2) are de-
fined as jt = j/(q0hp)f and M = (q0hp)f/(q0h)m.

The Q > 0 term in (2) is some (constant) internal heat source and
its inclusion allows the model to describe penetrative convection
in the porous layer. The boundary conditions for the problem are
vi = 0, T = TU and C = CU at z = d and vi = 0,T = TL and C = CL at z = 0,
where CL > CU, so that the system is being salted from below. We
allow for the two cases of heating from below TL > TU and from
above TL < TU.

Let us now consider the basic steady state solution ð�v i; �p; T;CÞ of
(2), with a throughflow in the z direction of the form

v ¼ ð0;0;VÞ;

where V is constant. Utilising the boundary conditions, Eqs. (2)3 and
(2)4 show that

TðzÞ ¼ Qz
V
þ TL þ

VðTL � TUÞ þ Qd

V e
Vd
jt � 1

� � 1� e
Vz
jt

� �
;

CðzÞ ¼ CL þ
CL � CU

1� e
Vd
jc

e
Vz
jc � 1

� �
:

In contrast to the classical Bénard problem, the steady temperature
field for this problem is clearly not linear in z. A derivation of the
hydrostatic pressure �p may be found from (2)1, but is not included
as it is eliminated in subsequent analyses.

To assess the stability of the steady solution we introduce a per-
turbation (ui, h, c, p) to the steady state solution, such that

v i ¼ �v i þ ui; T ¼ T þ h; C ¼ C þ c; p ¼ �pþ p; and non-dimen-
sionalise with scalings of

ui ¼
jt

d
u�i ; pi ¼

ljt

k0
p�i ; h ¼ h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dQl

gq0atk0

s
; xi ¼ dx�i ;

c ¼ c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ljtðCL � CUÞ

gq0ack0d

s
; t ¼ d2

jtM
t�:

Substituting the perturbations and non-dimensionalised vari-
ables into system (2), and dropping the stars we derive

0 ¼ �p;i �
1

f ðzÞui þ biRh� biRsc;

ui;i ¼ 0;

h;t þ uih;i þ Tf h;z ¼ RGðzÞwþr2h;

/̂c;t þ uic;i þ Tf c;z ¼ RsMðzÞwþ
1
Le
r2c;

ð3Þ

where w = u3, f(z) = s(z/d) = 1 + kz with k > �1 to ensure f(z) > 0,

GðzÞ ¼ Tf

eTf � 1
eþ 1

Tf

� �
eTf z � 1

Tf
;

MðzÞ ¼ LeTf eLeTf z

eLeTf � 1
;

and

/̂ ¼ M/; Tf ¼
Vd
jt
; e ¼ ðTL � TUÞjt

Qd2 ; Le ¼ jt

jc
;

R2 ¼ gq0atk0d3Q
lj2

t
; R2

s ¼
gq0ack0dðCL � CUÞ

ljt
;

with R2 and R2
s being the thermal and solute Rayleigh numbers,

respectively and Tf being the non-dimensional form of the through-
flow. It is important to note that e > 0 and e < 0 correspond to
heating from below and above, respectively.

The perturbed boundary conditions are now ui = h = c = 0 at
z = 0, 1. We assume that the perturbation fields (ui, h, c, p), defined
on R2 � ½0;1�; are periodic in the x and y direction and we shall de-
note by X = [0, 2p/ax] � [0, 2p/ay] � [0,1] to be the periodicity cell.

Due to the specific non-dimensionalisation used, as the
throughflow V tends to 0 (which is equivalent to Tf ? 0), all singu-
larities are removable, allowing system (3) to revert to the stan-
dard classical system where no throughflow is present. This
follows as M(z) ? 1 and G(z) ? e + z � 1/2 as Tf ? 0.

3. Linear instability analysis

To proceed with the linear analysis the nonlinear terms from (3)
are discarded. Since the resulting system is linear and autonomous
we may seek solutions of the form ui = ertui(x), h = erth(x),
c = ertc(x), and p = ertp(x), where r is the growth rate and a com-
plex constant. Taking the double curl of the linearised version of
(3)1, using the third component, (and the fact that u is solenoidal)
we have the linearised system

r2w� f;3
f

w;3 � Rfr2
1hþ Rsfr2

1c ¼ 0;

r2h� Tf h;3 þ RGw ¼ rh; ð4Þ
1
Le
r2c � Tf c;3 þ RsMw ¼ /̂rc;

where r2
1 ¼ @

2=@x2
1 þ @

2=@x2
2. We now introduce normal modes of

the form w = w(z)pf(x, y), h = h(z)pf(x,y) and c = c(z)pf(x,y), where
pf(x,y) is a plan-form which tiles the plane (x, y) with
r2

1pf ¼ �a2pf ; such that a2 ¼ a2
x þ a2

y : The plan-forms represent
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