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a b s t r a c t 

The dynamics of gas fluidization is investigated by means of multiresolution analysis. Empirical mode de- 

composition (EMD) and the Hilbert-Huang transform approach applied to the signals of pressure fluctua- 

tion of the bed have been used for this purpose, operating in bubbling and slugging regimes. To elucidate 

the different components of the different scales, recurrence plots (RP) and recurrence quantification anal- 

ysis (RQA) have been used. These techniques can distinguish the three different scales of gas fluidization: 

micro-scale, meso-scale and macro-scale, and classify every mode on its scale. Three modes from the 

EMD have been related to each dynamic component: particle interaction, local bubble dynamics and bed 

oscillation, showing evidence of this relationship. To show that the complexity of the modes matches 

with their characteristics, two measures have been computed: the apparent entropy and Lemped–Ziv 

complexity. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Although gas fluidization has been industrially used for over 

a century, it remains a complex technique that still attracts re- 

searchers aiming to improve control and performance operation. It 

is recommended when good gas-solid contact is needed, improv- 

ing mass and heat transfer. Also, its peculiar “fluid-like” dynam- 

ics greatly facilitates the handling and processing of solids in in- 

dustrial processes. It is well known that particulate fluidization is 

desired for an optimal contact between the phases, but aggrega- 

tive fluidization is quite common in industrial applications. Fur- 

thermore, for deep beds the bubbling fluidization can evolve to 

slugging fluidization, which is not convenient because then part of 

the gas bypasses the solid contact. 

Gas fluidization is a complex dynamic system characterized by 

non-linearity and non-equilibrium. The complexity of its dynamics 

is due to the interaction of the phases involved at different scales 

in the heterogeneous flow structure. Complex systems are char- 

acterized by a multi-scale structure nature with respect to space 

and time, showing dissipative structures by non-linear and non- 

equilibrium interactions and exchanging energy, matter and infor- 

mation with their surroundings ( Li, 20 0 0; Li and Kwauk, 20 03; Li 

et al., 2004 ). 

∗ Corresponding author. 

E-mail address: miquel.llop@udg.edu (M.F. Llop). 

Also, gas fluidization is a typical dissipative structure con- 

sisting of a non-equilibrium system with particle and fluid self- 

organization. A considerable amount of the total input energy is 

dissipated to maintain the two phase heterogeneous structure. 

Nevertheless, all the phenomena that take place in gas fluidiza- 

tion are the result of the nonlinear interaction between the par- 

ticles and the fluid with their own individual movement tenden- 

cies. The dissipative structure in fluidized systems has been found 

to show multi-scale characteristics and the sum of individual pro- 

cesses does not properly reflect the dynamics of the system. There- 

fore, different scales must be considered for a detailed analysis. 

The system can be structured into three basic scales: micro-scale 

(individual particle and fluid scale), meso–scale (cluster and dilute 

phase scale, or “bubble and emulsion”) and macro-scale (effect of 

the equipment) ( Li, 20 0 0 ). This approach through different struc- 

tures involving the fluidized bed is crucial to better understand the 

behavior of the bed dynamics and the influence of the different 

structures in the bed. 

Among the techniques used to characterize the fluidization, the 

pressure fluctuations analysis is perhaps the most popular one be- 

cause it is easy to implement and inexpensive, especially in in- 

dustrial installations. Other techniques allow for more and bet- 

ter information, but their implementation is much more com- 

plex. In spite of the limited information provided by the pressure 

fluctuations of the fluidized bed, when properly threated, it may 

be a consistent and valuable source of information. It has even 

been considered to be the fingerprint of the system. The pres- 
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sure fluctuations have been analyzed by means of time and fre- 

quency domain techniques ( Fan et al., 1991; Johnsson et al., 20 0 0; 

Llop and Jand, 2003; Sasic et al., 2007 ). However, given the com- 

plexity of multiphase flow and its nonlinear behavior, the analysis 

by nonlinear techniques has been introduced ( van den Bleek and 

Schouten, 1993 ; Zijerveld et al., 1998 , Johnsson et al., 20 0 0 ; Llauró

and Llop, 2006 ; Llop et al., 2012 ). 

Several researchers have applied wavelet analysis to the exper- 

imental time series of pressure fluctuations for multiscale resolu- 

tion ( Lu and Li, 1999; Zhao and Yang, 2003 ; Shou and Leu, 2005; 

Wu et al., 2007 ; Tahmasebpour et al., 2015) . To a lesser extent, 

Empirical Mode Decomposition (EMD) of the signal has been used 

to extract intrinsic mode functions (IMF) with different frequen- 

cies, which can be related to the different scales. The signal anal- 

ysis approach has attracted the attention in several research fields. 

Briongos et al. (2006) used the multiresolution analysis EMD to 

study the hydrodynamics of a gas-solid fluidized bed. 

Wavelets can handle non-stationary signals due to the nature of 

wavelet functions and, although they are basically suited for lin- 

ear signals, they have been used successfully in non-linear sys- 

tems. EMD is suitable for nonlinear and non-stationary systems 

and makes it possible to simultaneously obtain the real time and 

the instantaneous frequency and can classify time or frequency de- 

pendent information with more accuracy. 

In this work the multiscale resolution of bubbling and slug- 

ging regimes has been studied, decomposing the pressure fluctu- 

ations in the bed by EMD while, using the Hilbert-Huang trans- 

form method, the intrinsic frequency has been extracted. With the 

aim to analyze the different modes obtained with EMD, Recurrence 

Plots (RP) and Recurrence Quantification Analysis (RQA) have been 

used. The modes extracted have been related with the particle, 

bubbles and bulk structures in the fluidized bed. To analyze the 

structure and to be able to discuss the behavior of the modes gen- 

erated with the EMD two measures of the complexity have been 

used: approximate entropy (ApEn) and Lempel–Ziv (L–Z) complex- 

ity, which are very useful parameters to characterize spatiotempo- 

ral patterns. 

2. Theoretical background 

2.1. Empirical mode decomposition (EMD) 

Wavelet analysis has been used for the decomposition of 

the pressure fluctuation signal in different levels of resolution, 

and related to the three scales associated to the fluidization 

dynamics: micro-scale, meso–scale and macro-scale. Zhao and 

Yang (2003) studied the fractal behavior of resulting levels 

from Daubechies wavelets with the Hurst exponent. Lu and 

Li (1999) used the discrete wavelet transform to analyze the pres- 

sure signal in a bubbling fluidized bed and related the bubble 

size with the average peak value of level 4 and the bubble fre- 

quency with the peak frequency of this level. Tahmasebpour et al. 

(2015) decomposed the pressure signals by means of Daubechies 

wavelets in three sub-signals representing the three scales of flu- 

idized bed dynamics and analyzed them by means of Recurrence 

Plots and Recurrence Quantification Analysis. 

Both the Fast Fourier Transform (FFT) and the Wavelet Trans- 

form (WT) can analyze nonstationary signals but have limited ac- 

curacy when used to classify time or frequency dependent infor- 

mation. The Hilbert-Huang Transform (HHT) is a time-frequency 

analysis method developed for the analysis of non-stationary and 

non-linear time series introduced by Huang et al. (1998) , particu- 

larly suited for nonlinear processes. The result is a combination of 

an empirical approach with a theoretical tool, which has been suc- 

cessfully used in several fields of research like meteorology, seis- 

mology, multiphase flow, etc. The HHT is based on the Empirical 

Mode Decomposition (EMD), which decomposes the signal in sev- 

eral oscillatory modes, named Intrinsic Mode Functions (IMF). The 

EMD is based on the sequential extraction of energy associated 

with the intrinsic mode functions of the signal, from finer tempo- 

ral scales (high frequency modes) to coarser ones (low frequency 

modes). 

The algorithm of extraction proposed by Huang et al. (1998 ) 

generates upper and lower smooth envelopes enclosing the signal. 

These envelopes are generated by the identification of all local ex- 

trema, which are connected by cubic spline lines. A new function 

is obtained by subtracting the running mean of the envelope from 

the original data signal. If this function has the same number of 

zero-crossing points and extrema, the first IMF is obtained, which 

contains the highest frequency oscillations in the signal. Otherwise, 

the process must continue until an acceptable tolerance is reached. 

To extract the following IMF, the previous IMF is subtracted from 

the original signal. The difference will be treated like the original 

data and the process is applied again until the above mentioned 

condition is fulfilled. The process of finding the several modes is 

carried out until the last mode (the residue) is found. The original 

signal is the sum of the different modes generated, 

x (t) = 

n ∑ 

i =1 

C i (t) + r n (t) (1) 

where C i is every mode extracted and r n is the residual part of the 

signal. 

Once the modes have been extracted, a second process must 

be done. The instantaneous frequency is computed by applying the 

Hilbert transform to every mode so that the time-frequency distri- 

bution of the signal energy is obtained. Each mode function C i (t) is 

associated with its Hilbert Spectral Analysis H i (t) : 

H i (t) = 

1 

π
P 

∫ + ∞ 

−∞ 

C i (τ ) 

t − τ
d(τ ) (2) 

and the combination of C i (t) and H i (t) gives the analytical signal 

Z i ( t ) with complex component: 

Z i (t) = C i (t) + j H i (t) (3) 

which can be expressed as: 

Z i (t) = A i (t) e j θi (t) (4) 

where A i ( t ) is the amplitude of the signal and θ i (t) is the phase of 

the oscillation mode “i ”. Hence, the original time series, neglecting 

the residual part, can be expressed as: 

x i (t) = Re 

n ∑ 

i =1 

A i (t) e j θi (t) (5) 

Re meaning the real part. The amplitude A i ( t ) and the phase 

θ i (t) times series can be computed by: 

A i (t) = 

√ 

C 2 
i 
(t) + H 

2 
i 
(t) (6) 

θi (t) = tan 

−1 

(
H i (t) 

C i (t) 

)
(7) 

The instantaneous frequency ( f i ) can be obtained by differenti- 

ating the phase angle: 

f i (t) = 

d θi (t) 

dt 
(8) 

For each mode, the Hilbert spectrum can be defined as the 

square amplitude 

H( f, t) = A 

2 ( f, t) (9) 

The spectrum provides an intuitive visualization of the instan- 

taneous frequencies of the signal in the time scale, showing where 
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