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a b s t r a c t 

The effects of droplet inertia and turbulent mixing on the droplet number density distribution in a tur- 

bulent flow field are studied. A formulation of the turbulent convective diffusion equation for the droplet 

number density, based on the modified Fully Lagrangian Approach, is proposed. The Fully Lagrangian Ap- 

proach for the dispersed phase is extended to account for the Hessian of transformation from Eulerian 

to Lagrangian variables. Droplets with moderate inertia are assumed to be transported and dispersed by 

large scale structures of a filtered field in the Large Eddy Simulation (LES) framework. Turbulent fluctua- 

tions, not visible in the filtered solution for the droplet velocity field, induce an additional diffusion mass 

flux and hence additional dispersion of the droplets. The Lagrangian formulation of the transport equa- 

tion for the droplet number density and the modified Fully Lagrangian Approach (FLA) make it possible to 

resolve the flow regions with intersecting droplet trajectories in the filtered flow field. Thus, we can cope 

successfully with the problems of multivalued filtered droplet velocity regions and caustic formation. The 

spatial derivatives for the droplet number density are calculated by projecting the FLA solution on the 

Eulerian mesh, resulting in a hybrid Lagrangian–Eulerian approach to the problem. The main approxima- 

tions for the method are supported by the calculation of droplet mixing in an unsteady one-dimensional 

flow field formed by large-scale oscillations with an imposed small-scale modulation. The results of the 

calculations for droplet mixing in decaying homogeneous and isotropic turbulence are validated by the 

results of Direct Numerical Simulations (DNS) for several values of the Stokes number. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

The analysis of droplet dynamics and their spatial distribution 

in turbulent flows is important for various engineering applica- 

tions, ranging from fuel injection in internal combustion engines 

to droplet dispersion in environmental flows (e.g. Sazhin (2014) ). 

Inertial droplets suspended in turbulent flow fields undulate un- 

der the influence of flow fluctuations along their trajectories. The 

droplet velocities are controlled by both the history of the droplet 

motion and the spatially correlated structures of the turbulent flow 

field. A variety of characteristic responses of the discrete phase to 

the turbulent fluctuations of the carrier phase have been identi- 

fied. These responses include the macroscopic scale turbulent mix- 

ing ( Fung et al., 2003 ), de-mixing or un-mixing of particles ( Fessler 
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et al., 1994; Reeks, 2014 ), Random Uncorrelated Motion (RUM) 

( Meneguz and Reeks, 2011 ) and increasing settling velocity ( Wang 

and Maxey, 1993; Maxey, 1987 ). In large-scale engineering and en- 

vironmental applications, the behaviour of sufficiently low-inertia 

droplets/particles, characterised by small values of the Stokes num- 

ber (the ratio of the droplet velocity relaxation time to the macro 

time scale) in turbulent flows, has been successfully described by 

the convective diffusion equation with different models for the tur- 

bulent diffusion coefficient ( Fuchs, 1964; Berlyand, 1974 ). 

Two approaches are commonly used for the analysis of turbu- 

lent droplet/particle laden flows: Eulerian–Eulerian and Eulerian–

Lagrangian (see Marchioli, 2017; Simonin et al., 1993 ). The 

Eulerian–Eulerian approach gives satisfactory results for describ- 

ing large-scale structures and some integral parameters of tur- 

bulent gas-particle flows in channels, jets, and boundary layers. 

In this approach, uniqueness of all parameters of the particulate 

continuum is assumed. However, the mesoscale flow regions with 

possible formation of local droplet accumulation zones are asso- 
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ciated with intersecting droplet trajectories and caustics in the 

dispersed-phase velocity field. The appearance of local regions of 

intersecting droplet trajectories with singularities in the droplet 

number density on the edges of these regions (caustics), and the 

types of these singularities in non-uniform and unsteady flows 

with inertial droplets, were described by Osiptsov (1984) . Further 

investigations can also be found in Falkovich et al. (2002) and 

Wilkinson et al. (2006) . Classes of two-particle models that al- 

low for singularities in the phase space and intersecting trajecto- 

ries (see Zaichik and Alipchenkov, 2007; Zaichik and Alipchenkov, 

2009; Chun et al., 2005; Gustavsson and Mehlig, 2011a; Pan 

and Padoan, 2010 ), are presented in Bragg and Collins (2014b,a) . 

Also, Eulerian models for the particulate continuum inferred from 

the kinetic equations for particles or from the equations for the 

probability density functions (PDF) of particles are presented by 

Zaichik et al. (2008) and by Shrimpton et al. (2014) . In the 

Eulerian–Eulerian approach several versions of the two-fluid k − ε
model have been used ( Pakhomov and Terekhov, 2013 ). In en- 

gineering publications on turbulent gas-droplet flows, the carrier 

flow field has been described on the filtered scale, with the system 

of droplets described in the framework of the continuum approxi- 

mation (e.g. Volkov and Emelianov (2008) ). 

In many engineering applications (e.g. fuel spray injection and 

mixing, two-phase flows in combustion chambers), it is important 

to have information about the structure of local particle/droplet ac- 

cumulation zones to estimate the rates of possible droplet colli- 

sions and the effect of droplet accumulation on heating and evap- 

oration of droplets and combustion of fuel vapour/air mixtures 

( Sazhin, 2014 ). This information can be inferred only from La- 

grangian tracking of the dispersed phase. In the standard Eulerian–

Lagrangian approach for gas-particle/droplet flow modelling (e.g. 

Crowe et al., 1977; Sazhin, 2014 ), the carrier-phase flow parameters 

are calculated on a fixed Eulerian mesh and the particles/droplets 

are tracked along chosen Lagrangian trajectories. Direct modelling 

of individual droplet trajectories in the carrier phase leads to sat- 

isfactory results for the droplet velocity field (e.g. Sazhina et al., 

20 0 0 ). However, the correct calculation of the droplet number 

density field presents serious difficulties. This was instructively 

demonstrated by Healy and Young (2005) , who showed that to 

reach a satisfactory accuracy in the calculation of the droplet num- 

ber density in a laminar flow it is necessary to have about 10 3 La- 

grangian droplet trajectories per Eulerian cell. 

An approach that incorporates the solution of the droplet 

number conservation equation in Lagrangian form is the 

Fully Lagrangian Approach (FLA). In the paper by Healy and 

Young (2005) it was demonstrated for laminar flows that the 

number density of non-colliding particles along a chosen particle 

trajectory, and the trajectory itself, can be much more efficiently 

calculated based on the Fully Lagrangian Approach (FLA) proposed 

by Osiptsov (1984) (see also Osiptsov, 20 0 0 ). FLA is based on the 

Lagrangian form of the continuity equation for the particulate 

phase, treated as a continuum, and the additional equations for 

the components of the Jacobi matrix of transformation from 

the Eulerian to the Lagrangian coordinates. This is essentially 

a method of characteristics for the solution of the continuity 

equation on the Lagrangian trajectories. This approach can deal 

with such complex cases as the regions of intersecting droplet 

trajectories and caustics. In Ijzermans et al. (2009) , the efficiency 

of the FLA for the calculation of the droplet number density and 

its modelling capability in identifying the spatial structure of 

caustics was demonstrated. 

The introduction of the FLA into the study of turbulent flows 

(see Picciotto et al., 2005 ) resulted in the identification and anal- 

ysis of spatial structures of the dispersed phase distribution us- 

ing the moments of concentration. The analysis by Meneguz and 

Reeks (2011) showed that the distribution of the particle concen- 

tration in the long term is log normal. This is consistent with the 

analysis by Monchaux et al. (2012) where, using Voronoï tessella- 

tion, the authors observed the same log normal distribution. Also, 

FLA studies on DNS of homogeneous and isotropic turbulence led 

to identification of the mechanisms involved in the segregation 

process ( Meneguz and Reeks (2011) ; Reeks (2014) ). The introduc- 

tion of the FLA in the study of turbulent flows resulted in the 

quantification of the singularities related to trajectory intersections 

and the establishment of a relation between the frequency of their 

occurrence and the Stokes number. 

The application of FLA in the Eulerian–Lagrangian context 

for gas-droplet flows, makes it possible to drastically reduce 

the number of calculated droplet trajectories, since in this case 

it is sufficient to have only one Lagrangian trajectory per Eu- 

lerian cell (or fold in an Eulerian cell) to ensure the re- 

quired level of accuracy in the calculation of droplet concen- 

tration. This method has been successfully used for calcula- 

tions concerning particle/droplet concentration fields in various 

flows (e.g. Tsirkunov et al. (2002) ; Golubkina et al. (2011) ; 

Govindarajan et al. (2013) ; Wang et al. (2006) ; Lebedeva and Os- 

iptsov (2009) ; Ravichandran and Govindarajan (2015) ). 

Lebedeva et al. (2013) proposed a method based on a combina- 

tion of the Lagrangian viscous-vortex method for the carrier phase 

and the Fully Lagrangian Approach for the dispersed phase. This 

is the fully meshless approach which makes it possible to avoid a 

cumbersome procedure of remeshing the dispersed phase param- 

eters from the Eulerian to Lagrangian grids, which is typical for 

standard Eulerian–Lagrangian approaches. 

In some publications (e.g. Picciotto et al., 2005; Meneguz and 

Reeks, 2011; Reeks, 2014 ), the Fully Lagrangian Approach for the 

dispersed phase was used alongside the DNS calculations of the 

carrier phase flow fields in a turbulent channel flow and in forced 

homogeneous turbulence simulations. These authors identified the 

formation of multiple singularities in the particle concentration 

fields. 

Note that the carrier-phase velocity fluctuations lead to in- 

creased dispersion of suspended particles/droplets (hereafter re- 

ferred to as droplets) which can be identified as turbulent mix- 

ing (see Reeks, 1977 ). Analogies between the mixing of droplets 

in turbulent flows and Brownian diffusion have been drawn by 

Xia et al. (2013) and Fung et al. (2003) . This allows one to assume 

that the interaction between discrete phase and small scale tur- 

bulent fluctuations can be regarded as a Fickian diffusion process. 

Also, it has been observed that coherent turbulent structures of the 

carrier phase induce segregation of droplets at least at the level of 

the integral length scale of the flow field ( Fessler et al., 1994 ), and 

the formation of patterns as described by Wood et al. (2005) , and 

by Soldati and Marchioli (2009) . 

Droplet dispersion in turbulent droplet laden flows has been 

found to be far more sophisticated than the scalar mixing of a con- 

taminant in a turbulent flow field (see Reeks, 1977; Fessler et al., 

1994 ). It was shown that the turbulence of the carrier phase is re- 

sponsible not only for droplet turbulent mixing (Fickian diffusion) 

(see Phythian, 1972 ), but also for the un-mixing of droplets to form 

coherent structures controlled by the integral length scale of the 

turbulent flow field (see Fessler et al., 1994; Ijzermans et al., 2010 ) 

and their accumulation in caustic formations. Thus, mixing and un- 

mixing processes in this case can co-exist ( Xia et al., 2013 ). 

In addition to mixing, dispersed flows exhibit a wide range 

of responses to the fluctuation of the carrier phase flow field. 

With increasing droplet inertia (Stokes number), the effects of 

memory on the droplet motion become more pronounced. Di- 

rect numerical simulation of the behaviour of inertial droplets 

in forced isotropic turbulence shows that, as a rule, the dis- 

tribution of inertial droplets in a turbulent velocity field is 

markedly non-uniform. Maxey (1987) identified the segregation of 
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