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a b s t r a c t 

We demonstrate that a lattice-Boltzmann lattice-spring method can be used to simulate a dynamic be- 

havior of a suspension of a large number of flexible fibers in finite Reynolds number flows. In the method, 

lattice-Boltzmann equation is adopted to simulate fluid velocity and vorticity while lattice-spring model 

with three-body forces can be employed to model the bending deformation of solid bodies. In order to 

realize the non-slip boundary condition, a forcing term is simply calculated by using the Newtonian sec- 

ond law and imposed with an immersed boundary scheme. The method is validated by comparing the 

present results with experiments and existing theories and methods. Subsequently, the method is ap- 

plied to simulate a dynamic process of flexible fibers settling on a static or moving screen/wire net while 

a fiber mat is simultaneously built over the screen and resists fluid flowing. The number of fibers, fiber 

density and flexibility, and ratio of the relative velocity of the screen/wire to fluid can be systematically 

varied at different levels. Their influences on drainage rate are computed and evaluated. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

There are extensive applications of particulate flows in chemical 

engineering (fluidized bed in reactor, particle separation, screening, 

filtration) and sciences (biological particle coagulation and disper- 

sion, blood flows and cell adhesion, sands sedimentation in rivers), 

and in various industries (pharmaceutical, petroleum, food pro- 

cess, paper industry etc.). Due to the importance, engineers and 

scientists have paid a great attention to the subject of the par- 

ticulate flows in both experimental and theoretical studies. Most 

investigations currently focus on the rigid particle-fluid problems. 

Very few studies are reported on deformable particle-flow prob- 

lems. Some direct simulation methods are developed to model the 

solid particle motion in fluids. Among the traditional finite ele- 

ment method, the most popular one is an arbitrary Lagrangian 

Eulerian scheme ( Hu, 1996 ) based on Galerkin finite element ap- 

proach. In this method, the meshes are moving with solid parti- 

cles and the meshes need to be re-meshed when unacceptable el- 

ement deformation is detected. It is obvious that the re-meshing 

process largely increases computational load and limits to a sys- 

tem with a small number of particles. This method is recently ex- 
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tended to treat deformable particles ( Gao et al., 2011, 2013 ), only 

two dimensional cases at a very low Reynolds number were re- 

ported. Later, Glowinski et al. (1999) with others ( Glowinski et al., 

20 01; Patankar et al., 20 0 0; Wan. and Turek., 20 06 ) presented a 

Lagrange-multiplier-based fictitious-domain method for the motion 

of large numbers of rigid particles in a Newtonian fluid. Their fi- 

nite element formulation allows use of a fixed structured grid and 

avoids re-mesh process. However, their reports are limited to rigid 

solid particles. 

Peskin (1977) was the first to propose an immersed bound- 

ary method (IBM) to treat deformable bodies associated with 

blood flow. Later, the IBM had been applied to particulate 

flows ( Fogelson and Peskin, 1988 ). In Peskin’s method, regular Eu- 

lerian grids are operated for fluid domain and the Lagrangian grids 

of deformable particles move over the fixed fluid grids. A forc- 

ing term is added on the interface between the fluid and solid 

to force the solid boundary velocity equal to the fluid velocity 

(non-slip boundary condition) through Dirac delta function. For 

fluid field, the Navier–Stokes equations can be solved either by 

traditional computational fluid dynamics (CFD) or by a lattice- 

Boltzmann method (LBM) ( Succi, 2001 ). The solid particles can be 

either rigid or deformable. 

Ladd (1994) had firstly proposed a moving boundary condition 

in the LBM and applied it to particulate flows. Later, Koch and 
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others ( Aidun and Clausen, 2010; Aidun et al., 1998; Benzi et al., 

1992; Duenweg and Ladd, 2009; Feng and Michaelides, 2004, 

2005; Koch and Ladd, 1997; Luo et al., 2017; Qi, 1999; Qi and 

Gordnier, 2015; Qi et al., 2014a, 2014b, 2010; Whittington, 1998 ) 

had demonstrated that the LBM is the most simple and effi- 

cient method to simulate particle suspensions. Unlike traditional 

CFD, one of features of the lattice-Boltzmann method (LBM) is 

that micro-kinetic nature of fluid particle collision and stream- 

ing, similar to convection-diffusion of fluid momentum, is pre- 

sented through the lattice-Boltzmann equation at every time step. 

The method allows ones to simulate flows efficiently in complex 

geometrical solid boundaries. The main features and advantages 

as well as disadvantages of LBM are briefly summarized in a re- 

cent article by Succi (2015) . Feng and Michaelides (2004) were 

the first to combine the advantage of LBM with IBM to deal with 

rigid particles. For deformable particles, a lattice-spring model 

was proposed to handle the deformation of a flexible body by 

Buxton et al. (2005) . In their method, the deformable solid body 

is discretized as individual particles located in a regular lattice 

and connected by a two-body spring force between two neigh- 

boring particles as a bond. The two-body force can deal with ex- 

tension and compression but cannot accurately handle the bend- 

ing deformation, because the two-body central force is a func- 

tion of distance between two neighboring solid particles and does 

not provide any bonding angle information between two adjacent 

bonds or springs. Wu and Aidun (2010a, 2010b, 2010c) took Bux- 

ton’s spring model in their LB simulation. Subsequently, a three- 

body force with angular information between two adjunct bonds 

was added into the lattice-spring model to handle bending defor- 

mation by Wu et al. (2014) . Other authors such as Duenweg and 

Ladd (2009) and Basagaoglu et al. (2013, 2008) also utilized LBM 

and bead-spring model to simulate the soft materials in flows. 

Unfortunately, both Wu and Aidun (2010a, 2010b, 2010c) and 

Wu et al. (2014) used the same forcing term as those by 

He et al. (1998) and Feng and Michaelides (2004) to take ac- 

count of the interactions between fluids and solid particles. 

Guo et al. (2002) proved that this type forcing (body force) term 

cannot be operated for an unsteady body force case because 

the Navier–Stokes equations cannot be entirely recovered due to 

extra-terms caused by the spatial and temporal variation of the 

body force and they proposed a new forcing term, which enables 

the LB equation to recover the Navier–Stokes equations with a 

second-order accuracy for unsteady, non-uniform body forces. This 

new force term is called split-force and used by Kang and Has- 

san (2011) and Delouei et al. (2014) for rigid particle cases. We 

will adopt the direct split-forcing term by Guo et al. (2002) in this 

work. 

Among all particulate flows, a slender fiber system is difficult 

to cope with due to a large aspect ratio and deformability, which 

may complicates the fluid-solid interaction, although a numerical 

method based on a slender body theory has been extensively ap- 

plied to simulate multi fibers by Butler and others ( Butler and 

Shaqfeh, 2002; Saintillan et al., 2006; Shin et al., 2006, 2009 ). Their 

reports were limited either to very low Reynolds number or to 

rigid fibers. To consider inertial effect, some numerical methods 

for finite Reynolds flows were also developed ( Dahlkild, 2011; Ku- 

usela et al., 2001; Zhang et al., 2013 ) for rigid fibers. Lindstrom and 

Uesaka reported a flexible fiber model in fluid ( Lindström and Ue- 

saka, 2007, 2008 ). They used vorticity-vector potential form of the 

Navier–Stokes equations for fluid while fibers were modeled as a 

chain of segments interacting with themselves through a contact 

force. They also considered short and long-range hydrodynamic in- 

teractions. Their semi-dilute regime results for rheological prop- 

erties showed deviations from hydrodynamic interaction theories. 

Salahuddin et al. (2012, 2013) used a lattice-Boltzmann equation to 

simulate fluid and fibers were modeled as a chain of rods where 4 

nodes were distributed on the circumference of each cross section 

of the fiber. The interaction between fluid and fiber was treated by 

an external boundary force. However, the direct relationship be- 

tween the fiber rigidity and structure of the fiber and the effects 

of rigidity on motion were not reported. 

In order to effectively investigate effects of fiber rigidity on 

motion, we present a direct-forcing immersed boundary lattice- 

Boltzmann lattice-spring approach to simulate a suspension with 

a large number of flexible fibers. The approach is comprised of the 

following portions, and its advantage is briefly summarized as fol- 

lows: 

1. The LBM will be employed to simulate fluid flow behavior and 

structure on fixed Eulerian nodes. Most importantly, the Boltz- 

mann equilibrium distribution function physically represents a 

natural distribution of fluid particles and is presented at every 

time step so that the error is controlled. In contrary, the tra- 

ditional CFD is a sole numeric approximation and lacks such 

the equilibrium function. The algorithm of the LB method for 

fluid domain is extremely simple and consists of only two 

operations, collision and streaming. This simplicity essentially 

comes from two major reasons. First, when one derives the 

Navier–Stokes equation from the LB equation, the fluid distri- 

bution function is expanded to the second order of the small 

Knudsen number (the ratio of the mean free length to the 

characteristic spatial scale of the whole fluid system), called 

the Chapman–Enskog expansion or multi-scale analysis, so that 

collision, convection, and diffusion time scales are separated. 

This greatly simplifies the algorithm. Second, the fluid colli- 

sion matrix of the LB equation is also linearized by either the 

Bhatnagar–Groos–Krook (BGK) approximation or multi relax- 

ation time models. 

2. The distinct feature of the LB method is well known that the 

computation efficiency in the LB method is much higher than 

that in the traditional finite element and differential methods, 

due to the parallel nature of the LB algorithm itself, where 

only local information at one grid needs to be transferred to its 

neighboring grids, and the same simple operations are repeated 

on all grids. The code is easy to be parallelized in a GPU based 

CUDA code ( Wu and Qi, 2017; Wu et al., 2017 ). Also, the fluid 

grids are fixed so that the method is easy to handle moving and 

flexible solid boundaries. 

3. The lattice-spring model with three-body forces is utilized 

to mimic motion of discretized flexible fibers where moving 

Lagrangian solid particles are connected by elastic harmonic 

springs and angular bonds. This fiber model can consider not 

only extension, compression, but also bending deformation. It 

is noted that two body central force cannot treat bending de- 

formation. The deformation and motion of a flexible fiber are 

treated with an elastic model without resorting to a nonlinear 

Euler Bernoulli beam equation, which is a 4th order differential 

equation. The present approach allows us to accurately simu- 

late a large number of fibers in a finite Reynolds number flow. 

In addition, the lattice-spring model can be used to construct 

solid particles in any shape, such as rectangular, plate-like, non- 

spherical, spherical, cylindrical, etc., to treat deformation easier 

due to the use of elastic springs, and to accurately handle fibers 

with a large aspect ratio. 

4. The split-force term proposed by Guo et al. (2002) will be 

adopted to correctly address interactions between solids and 

flows. This algorithm takes into account the nonlinear effects 

of lattice discrete and unsteady interaction forces on the solid- 

fluid interfaces, and the Navier–Stokes equations are exactly re- 

covered. 

5. The fluid force or the force on solid nodes for non-slip bound- 

ary condition is simply calculated from the difference be- 
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