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a b s t r a c t 

A technique to control ventilated supercavity pulsation and noise is explored analytically and verified 

experimentally. The technique, which has its roots in parametric oscillators, changes the stiffness and, 

therefore, resonance frequency of the ventilated supercavity gas/water system by modulating or adding 

a sinusoidal component to the ventilation rate. This results in the ventilated supercavity effectively be- 

ing driven off-resonance as the frequency of the interface waves which force the supercavity gas/water 

system remain largely unchanged. A wide range of ventilation rate modulation frequencies cause the pul- 

sating supercavity to transition into twin vortex closure, typically within 0.25 s ec of modulation initiation. 

Accompanying the transition from pulsation to twin vortex closure is a reduction in the radiated noise, 

to the continuum at the pulsation frequency, often by 35 dB or more. Other modulation frequencies do 

not suppress pulsation, but are effective at changing the supercavity pulsation frequency. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Ventilated supercavities are generated by introducing gas into 

the separated flow region behind a cavitator placed at the nose of 

a body. The ventilation process provides control of the supercav- 

ity interior pressure and, therefore, its size. Supercavitation may 

significantly reduce the skin friction drag and result in an order- 

of-magnitude increase in speed compared with conventionally 

wetted vehicles ( Kirschner et al., 2001; Vlasenko, 2003; Wosnik 

et al., 2003 ). Ventilated supercavities are typically classified ac- 

cording to their closure regimes as re-entrant jet, twin vortex, or 

pulsating. In a free-field environment, with a gravitational field 

transverse to the velocity vector, the Campbell–Hilborne crite- 

rion ( Campbell and Hilborne, 1958 ) identifies the closure regimes 

that are likely to occur in terms of the product of the cavita- 

tion number, σ = 2(p ∞ 

− p c ) / (ρV 2 ∞ 

) , and Froude number, F r = 

V ∞ 

/ ( 
√ 

gD n ) : 

σ F r < 1 Twin Vortex 
σ F r > 1 Re − Entrant Jet . 

Here V ∞ 

is the freestream velocity, D n is the maximum diameter 

of the cavitator (or equivalent disk diameter if the cavitator is not 

axisymmetric), p ∞ 

and p c are the pressures in the freestream and 
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in the supercavity, respectively, ρ is the water density, and g is 

the gravitational acceleration of 9.81 m/sec 2 . It has been observed 

that a stability parameter, β = (p ∞ 

− p v ) / (p ∞ 

− p c ) , i.e., the ra- 

tio of the vaporous cavitation number to the supercavity cavita- 

tion number, must be greater than 2.645 for pulsation to occur 

in a free-field environment ( Paryshev, 2003, 2006; Kirschner and 

Arzoumanian, 2008 ). During water tunnel testing, tunnel walls in- 

duce a blockage effect that can cause the above relations to de- 

viate from their reported free-field values ( Tulin, 1961; Brennen, 

1969; Logvinovich, 1969; Kawakami and Arndt, 2011 ). Note that in 

this paper the terms “supercavity” and “cavity” will be used inter- 

changeably. 

Ventilated supercavity pulsation is an autoresonant phe- 

nomenon of the gas/water system ( Silberman and Song, 1959, 

1961; Song, 1961, 1962 ). It is characterized by the presence of trav- 

eling surface waves on the cavity interface that cause the cavity 

volume to change periodically and, in correspondence, the cav- 

ity pressure to change. The oscillating cavity pressure sets the 

air/water interface into an oscillating trajectory as it separates 

from the edge of the cavitator (viewed relative to the cavitator) 

( Skidmore et al., 2015a ). The oscillating interface advects down- 

stream to the cavity terminus. The “pinch off” or terminus of the 

cavity is considered to be the point where the local cavity diameter 

becomes less than that of the cavitator ( Paryshev, 2003 ). This pro- 

cess results in a strong monopole sound source ( Skidmore et al., 

2015a; Pierce, 1989 ). A typical pulsating supercavity generated in 

the ARL Penn State 0.305 m diameter water tunnel is shown in 

Fig. 1 . 
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Fig. 1. Photograph of a second order pulsating supercavity in the ARL Penn State 

0.305 m diameter water tunnel. This supercavity is classified as second order due 

to the presence of two waves on the cavity interface prior to pinch off. 

Song (1961) modeled a ventilated supercavity as a mass-spring 

system without damping or forcing, deriving an expression for 

natural frequency, f o , as: 

f o = 

1 

2 π

√ 

2 πγ p c 

ρK S ln 

R o 
r o 

. (1) 

Here γ is the specific heat ratio of the gas inside the cavity, K is a 

constant for a given cavity, S is the mean cavity surface area, R o is 

the tunnel radius, and r o is the mean cavity radius. Previously, Eq. 

(1) was used to successfully predict the resonance/pulsation fre- 

quencies of ventilated supercavities ( Skidmore et al., 2015a ). Pulsa- 

tion occurs when the interface instability induced wave frequency 

is equal to the ventilated supercavity gas/water system resonance 

frequency ( Song, 1961 ). 

It is possible to transition from the pulsating closure regime 

to either the twin vortex or re-entrant jet closure by adjusting 

the ventilation rate, pressure/depth, or velocity ( Skidmore, 2013 ). 

However, when these parameters are fixed or limited, an alter- 

nate means for mitigation of pulsation is desired. There exists a 

wealth of experimental data ( Michel, 1973; Laali and Michel, 1984; 

Michel, 1984; Semenenko, 2001 ) and theoretical models ( Kirschner 

et al., 20 01; Paryshev, 20 03, 20 06; Kirschner and Arzoumanian, 

2008; Song, 1961; Hsu and Chen, 1962; Woods, 1966; Spurk, 2002 ) 

of pulsation of ventilated supercavities. However, physical demon- 

stration of a means for pulsation control has not been reported. It 

is noted that consequences of pulsation are an adverse effect on 

vehicle stability and significant radiated noise. For these reasons, 

a means to suppress pulsation are desired. One such a method 

is proposed and numerically analyzed in Section 2 . This is fol- 

lowed by a physical means to implement the method proposed in 

Section 3 . Experimental results of the methodology are given in 

Section 4 before concluding on the methodology in Section 5 . 

2. Model for the control of ventilated supercavity pulsation 

Semenenko (1996) presented a brief numerical investigation on 

the effect of external periodic pressure perturbations on ventilated 

supercavity pulsation. He found that certain frequencies could sup- 

press pulsation but did not elaborate on how such perturbations 

could be induced in a practical setting (i.e., outside of a simu- 

lation or laboratory). It also seems plausible that practical pul- 

sation control could be achieved with active/adaptive control of 

the ventilation rate. This, of course, would require some compat- 

ible instrumentation and an appropriate numerical controller. An 

alternative, simpler approach is to modulate or add a sinusoidal 

component to the ventilation rate at a frequency away from the 

pulsation/resonance frequency. This, theoretically, changes the su- 

percavity resonance frequency from its constant ventilation rate 

value and, as a result, inhibits resonance excitation from the in- 

terface waves, whose frequencies remain largely unchanged. This 

approach, in keeping with the analysis of Song (1961) , can be sim- 

ply modeled with a modified form of Hill’s equation ( Teschl, 2012 ), 

as: 

d 

2 s 

d t 2 
+ 2 πb f o 

d s 

d t 
+ 4 π2 f 2 o [ 1 + h sin ( 2 π f mod (t + τ ) ) ] s 

= F o sin 2 π f o t . (2) 

Here s is the unsteady cavity area, t is time, f o is the (constant ven- 

tilation rate) resonance frequency, b is a damping parameter based 

on cavity bulk modulus, and F o is the fluctuating external pres- 

sure amplitude, ̃  P a , divided by the ρ
2 π ln 

R o 
r o 

term of Song (1961) and 

driving the surface area oscillations at f o . The terms h, f mod , and 

τ are parametric amplitude, frequency, and phase variables, re- 

spectively, that are used to modulate the stiffness and, thus, res- 

onance frequency in a time-dependent manner. Note that for an 

undamped ( b = 0 ), unforced ( F o = 0 ), and unmodulated ( h = 0 ) os- 

cillator, Eq. (2) reduces to the expression derived by Song (1961) . 

Also, note that for the case of h = 0 , Eq. (2) is that of a damped 

harmonic oscillator being driven at its resonance frequency, f o . 

Eq. (2) was solved numerically using the fourth order explicit 

Runge–Kutta solver, ode45, of MATLAB (2013) , for the case of a 

cavity pulsating between 10 and 70 Hz at 0.25 Hz intervals, with 

modulation frequencies between 10 and 70 Hz at 0.25 Hz inter- 

vals, and without damping ( b = 0). The amplitude of the forc- 

ing function, F o , was estimated to be 11.63 m 

2 /sec 2 . This assumes 

that the fluctuating external cavity pressure amplitude is equal to 

the fluctuating internal pressure amplitude, which was typically 

3.5 kPa for a pulsating cavity with an average radius of 2.3 cm 

inside of the 0.305 m diameter water tunnel ( Skidmore et al., 

2015a ). Modulation strength values range from 0.10 to 0.25, which 

correspond to oscillations about the constant ventilation rate res- 

onance frequency from 4.9% to 11.8%, respectively. Such oscilla- 

tions in the resonance frequency appear to be feasible without 

prohibitively large oscillations in the ventilation rate. This stems 

from the shallow slope of typical dimensionless ventilation rate, 

C ˙ Q 
= 

˙ Q / (V ∞ 

D 

2 
n ) , versus σ curves in the re-entrant jet flow regime 

where, as with pulsation, it is relatively difficult in this regime for 

air to escape from the cavity ( Spurk, 2002 ). The phase variable, τ , 

was given a random value between 0 and 2 π sec for each numer- 

ical solution. 

Typical plots of unsteady cavity area, s , versus time are shown 

in black in Fig. 2 . Fig. 2 also depicts the growth of unsteady cav- 

ity area in time of the forced but unmodulated system in magenta. 

Note that, depending on values of f o , f mod , and h , the unsteady cav- 

ity area may range from exhibiting stability with time, as shown in 

Fig. 2 a, to resonant instability, as shown in Fig. 2 d, where it grows 

at a rate much faster than that of the unmodulated but forced sys- 

tem. The growth rate envelope of the unsteady cavity area was re- 

gressed to s = exp (αt) and contours of α are plotted in Fig. 3 for 

all values of f o , f mod , and h considered. The value of α for the un- 

modulated ( h = 0 ) but forced system is denoted by the magenta 

“† ” on the color bar in Fig. 3 . Values of α denoted by white in 

Fig. 3 correspond to regions of stability (i.e., as depicted in Fig. 2 a) 

where red corresponds to instability, with s growing much more 

rapidly than for the unmodulated but forced system (i.e., as de- 

picted in Fig. 2 d). Regions of green in Fig. 3 correspond to s grow- 

ing in time, as shown in Fig. 2 b, but not as rapidly as for the un- 

modulated but forced system; while regions of orange correspond 

to growth rates above that of the unmodulated but forced system 

(i.e., as shown in Fig. 2 c) but below that of Fig. 2 d. Note the in- 

crease in white or region of stability as the modulation strength 

increases from 0.10 to 0.25. 
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