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a b s t r a c t 

In this study, the multiple holdup solutions problem for stratified laminar-laminar flow in a channel is 

investigated. A stationary but developing monodimensional flow model is adopted here to follow the 

evolution of the holdup value from a non-equilibrium inlet condition to the final downstream and fully 

developed solution. A first order Ordinary Differential Equation (ODE) solver is used to perform this anal- 

ysis under the assumption that the flow remains supercritical all along the pipe. The possibility of having 

a hydraulic shock during the longitudinal evolution of the system is investigated too. A second order ODE 

model is then proposed to handle situations with shocks, by including the effects of the longitudinal 

viscous stress diffusion when large interface level gradients occur. The results are also discussed regard- 

ing the approach of minimization of a potential function, showing a good consistency between the two 

methods. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Gas-liquid or liquid-liquid stratified flow patterns are frequently 

encountered in many industrial applications, where because of 

gravity, the heavier fluid is flowing at the bottom part of the pipe 

while the lighter one above it. Usually, such a stratified flow is 

predicted using a 1D approach, presented by Taitel and Dukler 

(1976b ). In this approach, the wall shear stress of each fluid and 

the interfacial shear stress, which are unknown a priori , must be 

estimated using closure laws. However, it is now recognized ( Baker 

et al., 1988 ) that in certain operating conditions, this procedure can 

lead to a non-unique holdup (or heavier phase fraction) in the so- 

lutions. This typically occurs for upward inclined pipes and low 

flow rates of the heavier phase. Landman (1991) dedicated the- 

oretical investigations on this issue and showed that the occur- 

rence of multiple values for holdup (and consequently pressure 

drop) persists when considering the exact solutions of the Navier–

Stokes equations for laminar-laminar flow in a channel. Ullmann 

et al. (2003) observed experimentally that at least 2 of the 3 so- 

lutions predicted by the model are feasible in such configuration 

and postulated that an hysteresis phenomenom could be involved. 

Thus leading to the question that which of these solutions will 

actually occur. This information is very relevant in practice for 
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gas-condensate pipelines, where the liquid content flowing in the 

pipeline dictates the choice of the pipe diameter and the minimum 

gas flow-rate at which it can be operated. 

Barnea and Taitel (1992) aimed at dealing with this problem 

using structural stability analysis of the different solutions. In that 

way, they used a transient set of equations of motion assuming a 

pipe uniformly filled all along its length with shear stress closure 

laws derived from the single-phase case. They concluded that, in 

upward inclined systems, the thinnest and the thickest steady-state 

solutions are linearly stable while the intermediate ones are unsta- 

ble and would not be realized. From a non-linear stability analy- 

sis, it appears that only the lowest holdup solution is stable in re- 

sponse to finite disturbances. Landman (1991) pointed out that the 

assumption of spatial uniformity should be avoided to perform a 

linear stability analysis because of its inconsistency with mass con- 

servation. On the other hand, the analysis presented in this paper 

assumes a stationary but developing laminar-laminar flow in an in- 

clined channel. A simple model based on the first order derivative 

equation was used to follow the evolution of the holdup longitudi- 

nally through the pipe from different values fixed at the inlet. 

In the present paper, the equations involved in the multiple 

holdup problem are reminded and discussed regarding the ap- 

proach by the minimization of a potential presented in Thibault 

et al. (2015) . Then, the results from the structural stability analysis 

are presented for different cases and analyzed by paying attention 

to the supercritical flow condition and the possibility of encoun- 

tering a hydraulic shock. 
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Fig. 1. Scheme of the stratified flow configuration. 

2. Governing equations and modeling 

The two-fluid one-dimensional integral equations used in the 

stratified flow model describing two immiscible fluids flowing in 

an inclined pipe are: 

∂ 

∂t 
(ρk A k ) + 

∂ 

∂x 
(ρk A k U k ) = 0 (1) 

for the mass conservation and 

∂ 

∂t 
(ρk A k U k ) + 

∂ 

∂x 
(ρk A k γk U 

2 
k ) = −∂A k P k 

∂x 
+ P i,k 

∂A k 

∂x 
− ρk A k g sin (θ ) 

− τk S k − τik S i + 

∂ 

∂x 

(
μk A k 

∂U k 

∂x 

)
(2) 

for the momentum conservation. Here A k is the cross-sectional 

area of the phase k (denoted L for the light fluid and H for the 

heavy one), U k its mean velocity ( j k being the superficial velocity), 

γ k the velocity shape factors, S k the wall perimeter, S i the interfa- 

cial perimeter, ρk the density, τ k and τ ik the shear stresses exerted 

on the fluid k by the wall and the interface respectively (see Fig. 1 ). 

The longitudinal viscous diffusion term 

∂ 
∂x 

(μk A k 
∂U k 
∂x 

) is generally 

neglected in the literature which will be also the case here first. 

Nevertheless, a model introducing the influence of this term will 

be presented in the last part of the text. 

P k is the space averaged pressure in the section A k and P i, k the 

pressure at the interface, which could be different in each phase 

due to surface tension effects. An hydrostatic evolution of the pres- 

sure in the section A k is assumed here and the effect of surface 

tension is neglected ( P i,H = P i,L ). The interfacial shear stresses are 

defined by τi = −τiH = τiL , and one can finally obtain the combined 

momentum equation: 

ρH 
∂U H 

∂t 
− ρL 

∂U L 

∂t 
+ 

[ 
ρH (1 − γH ) 

U H 

A H 

+ ρL (1 − γL ) 
U L 

A L 

] 
∂A H 

∂t 

+ ρH U H 
∂γH U H 

∂x 
− ρL U L 

∂γL U L 

∂x 
+ (ρH − ρL ) g cos (θ ) 

∂h 

∂x 
= F (3) 

with F = τL 
S L 
A L 

− τH 
S H 
A H 

+ τi S i 

(
1 

A H 

+ 

1 

A L 

)
− (ρH − ρL ) g sin (θ ) 

(4) 

and h the level of the heavy fluid. It is to be noted that the expres- 

sion of the shear stresses should be evaluated in the general case 

and not only at fully-developed steady-state solutions ( F = 0 ) to 

remain fully valid. However, the expressions for the shear stresses 

are derived in this study in a conventional way assuming a quasi- 

steady relation for the local holdup and phase velocities which is 

reasonable here since small gradients of the holdup will be consid- 

ered in the following lines. 

In the case of steady-state and fully developed laminar-laminar 

flow between two infinite parallel plates separated by a distance D , 

where the exact analytical expression of the velocity profiles can 

be easily obtained ( Biberg and Halvorsen, 20 0 0 ). Thus, there is no 

need to use approximative closure relations since the continuity 

of the velocity and the shear stress at the interface lead to the 

following expressions for the wall shear stresses: 

τH = μH 
∂u H 

∂y 

∣∣
y =0 

= 

3 μH U H 

εD ︸ ︷︷ ︸ 
free surface flow 

− 3 μH μL 

μH /ε + μL / (1 − ε) 

U L − U H 

(1 − ε ) ε D ︸ ︷︷ ︸ 
shear flow 

(5) 

τL = −μL 
∂u L 

∂y 

∣∣
y = D = 

3 μL U L 

(1 − ε) D ︸ ︷︷ ︸ 
free surface flow 

+ 

3 μH μL 

μH /ε + μL / (1 − ε) 

U L − U H 

(1 − ε ) ε D ︸ ︷︷ ︸ 
shear flow 

(6) 

and for the interfacial shear stress: 

τi = 6 

μH μL 

μH /ε + μL / (1 − ε) 

U L − U H 

(1 − ε ) ε D 

(7) 

where ε is the heavy fluid phase fraction so-called holdup ( i.e. h / D ) 

and u k ( y ) the local velocity distribution in phase k . It could be ob- 

served that the expression of the wall shear stresses make it pos- 

sible to have a negative value for τH , while the mean velocity U H 

remains positive. This would happen in the case of an interfacial 

shear stress two times larger than the free surface contribution. 

When this condition is met, a partial backflow would appear in the 

heavy phase near the bottom wall. Moreover, the velocity shape 

factors γ k , which are easily obtained from the velocity profile (see 

Appendix A ), are largely affected by partial backflow. 

2.1. Multiple holdup problem 

The steady-state solutions of the system ( F = 0 ) depend on the 

viscosity ratio μ∗ = μH /μL , the Lockhart & Martinelli parameter X 

2 

( Lockhart and Martinelli, 1949 ) and the Taitel & Dukler inclination 

parameter Y ( Taitel and Dukler, 1976a,b ). These parameters are de- 

fined in a general case as follows: 

X 

2 = 

(∂ P/∂ x ) H,S 

(∂ P/∂ x ) L,S 
and Y = 

�ρg sin (θ ) 

(∂ P/∂ x ) L,S 
(8) 

where, ( ∂ P / ∂ x ) k, S is the pressure drop observed if the phase k 

were flowing alone in the conduit, and �ρ = ρH − ρL . Here, the 

Lockhart–Martinelli and inclination parameters are expressed as: 

X 

2 = 

μH j H 
μL j L 

and Y = −�ρgD 

2 sin (θ ) 

12 μL j L 
(9) 

which lead to the holdup relation in its dimensional form: 

F = (−∂ P/∂ x ) L,S 
(
Y −

[
X 

2 (1 − ε ) 2 
(
ε (4 − ε) + μ∗(1 − ε) 2 

)
− ε 2 

(
μ∗(3 − 2 ε) + ε 2 (1 − μ∗) 

)]/ 

[
4 ε 3 (1 − ε ) 3 (ε (1 − μ∗) + μ∗) 

])
= 0 (10) 

where the quantity (−∂ P/∂ x ) L,S = 12 μL j L /D 

2 is always positive by 

definition. Eq. (10) can exhibits one, two or three physically accept- 

able solutions ( i.e. 0 < ε < 1) depending on the control parameters 

X 

2 and Y . The boundaries of the multiple solutions regions are de- 

fined by the following equations on Y and X 

2 : 

X 

2 = − ε 2 
[
(1 − μ∗) 2 ε 4 − 2 μ∗(1 − μ∗) ε 3 + 2 μ∗(3 − 4 μ∗) ε 2 

− 2 μ∗(1 − 3 μ∗) ε − μ∗2 ]/ (
(1 − ε) 2 

(
† 
))

(11) 

and 

Y = 

(
(1 − μ∗) ε 2 + μ∗

)(
(1 − μ∗) ε 2 − 2(1 − μ∗) ε − μ∗

)
2 ε(1 − ε) 3 

(
† 
) (12) 
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