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a b s t r a c t 

A weakly nonlocal phase-field model is used to define the surface tension in liquid binary mixtures in 

terms of the composition gradient in the interfacial region so that, at equilibrium, it depends linearly on 

the characteristic length that defines the interfacial width. Contrary to previous works suggesting that the 

surface tension in a phase-field model is fixed, we define the surface tension for a curved interface and 

far-from-equilibrium conditions as the integral of the free energy excess (i.e., above the thermodynamic 

component of the free energy) across the interface profile in a direction parallel to the composition gradi- 

ent. Consequently, the nonequilibrium surface tension can be widely different from its equilibrium value 

under dynamic conditions, while it reduces to its thermodynamic value for a flat interface at local equi- 

librium. In nonequilibrium conditions, the surface tension changes with time: during mixing, it decreases 

as the inverse square root of time, while in the linear regime of spinodal decomposition, it increases 

exponentially to its equilibrium value, as nonlinear effects saturate the exponential growth. In addition, 

since temperature gradients modify the steepness of the concentration profile in the interfacial region, 

they induce gradients in the nonequilibrium surface tension, leading to the Marangoni thermocapillary 

migration of an isolated drop. Similarly, Marangoni stresses are induced in a composition gradient, lead- 

ing to diffusiophoresis. We also review results on the nonequilibrium surface tension for a wall-bound 

pendant drop near detachment, which help to explain a discrepancy between our numerically determined 

static contact angle dependence of the critical Bond number and its sharp-interface counterpart from a 

static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. 

Finally, we present new results from phase-field simulations of the motion of an isolated droplet down 

an incline in gravity, showing that dynamic contact angle hysteresis can be explained in terms of the 

nonequilibrium surface tension. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In a liquid–vapor system at equilibrium, a molecule in the liq- 

uid bulk is surrounded by attractive neighbors, while a molecule 

at the surface, being attracted by a reduced number of molecules, 

finds itself in an energetically unfavorable state (see de Gennes 

et al., 2004 ). The resulting free energy deficit (i.e., a negative 

surplus) per unit interfacial area is a thermodynamic equilibrium 

property of the interface and can be identified macroscopically as 

the surface tension. This microscopic picture is reflected at the 

mesoscale in the phase-field model, an approach that goes back to 

van der Waals (1894) and has been widely used to describe many 

equilibrium interfacial properties. Here, on one hand, the contin- 

uum hypothesis is assumed to be valid, so that thermodynamic 

quantities such as temperature and pressure can be defined locally, 
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even when, as it usually occurs in continuum mechanics, they are 

not uniform in space. In addition, weakly nonlocal effects are taken 

into consideration, so that thermodynamic potentials depend on 

the gradients of the order parameter, i.e., density or concentration. 

Accordingly, an interface is described as a finite thickness transi- 

tion region where the order parameter is allowed to change con- 

tinuously, interpolating between the two phases. Naturally, as the 

surplus interfacial energy is defined in terms of density (or con- 

centration) gradients, it is natural to generalize the concept of sur- 

face tension to systems far from equilibrium (see the discussion in 

Joseph and Renardy, 1993 ). Many authors have studied nonequi- 

librium micro- and meso-scale interpretations of the surface ten- 

sion. For example, Ma et al. (1992) confirmed the microscopic na- 

ture of surface tension by numerically simulating a binary system 

at equilibrium using molecular dynamics. At the mesoscale, sev- 

eral coarse-grained expressions for the free energy can be found in 

the literature (see Hohenberg and Halperin, 1977 ), which have al- 

lowed to model dynamical processes such as mixing and demixing. 
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Since the surplus free energy depends on the density (or concen- 

tration) gradients in the interfacial region, a nonequilibrium sur- 

face tension can be defined, which characterizes the system dur- 

ing the whole process. This, in turn, can be considered as the ap- 

propriate jump boundary condition of any macroscopic multiphase 

flow model, where interfaces are considered to be zero-thickness 

surfaces (see Sagis, 2011 ). Applications of the phase-field model 

to dynamic processes in fluids lead to the introduction into the 

Navier–Stokes equation of a nonequilibrium capillary force, gen- 

erally referred to as the Korteweg force. As it arises naturally by 

applying Hamilton’s least action principle, this is a reversible body 

force, tending to restore the local equilibrium condition ( Lamorgese 

et al., 2011 ). As such, the Korteweg force tends to accelerate both 

the mixing process of miscible fluids and the phase separation of 

unstable or metastable mixtures. 

The remainder of this paper is laid out as follows. In 

Section 2 we review the formulation of a diffuse-interface model 

of inhomogeneous binary fluids (a.k.a. square-gradient theory or 

Model H, in the taxonomy of Hohenberg and Halperin, 1977 ), 

based on a regular solution model along with a Flory–Huggins 

and Cahn–Hilliard type of modeling for the excess (i.e., enthalpic) 

and nonlocal components of the Gibbs free energy of mixing. We 

then show the definition of the surface tension for a flat inter- 

face at local equilibrium and briefly discuss its extension to curved 

interfaces and far-from-equilibrium conditions. Subsequently, we 

recall the equations governing dynamic processes (under isother- 

mal conditions) before discussing some previously published re- 

sults from simulations of binary fluid mixing and demixing, and 

of the Marangoni migration of isolated drops in a temperature 

(or concentration) gradient. We also discuss previous results on 

the nonequilibrium surface tension at pinchoff from simulations 

of the buoyancy-driven detachment of a wall-bound pendant drop. 

Finally, we discuss contact angle hysteresis in phase-field simula- 

tions of the motion of an isolated drop down an incline in gravity. 

Conclusions are then presented. 

2. Model description 

Consider a regular binary mixture, composed of two incom- 

pressible liquids A and B having the same molar density, ρ . The 

phase-field model can be derived assuming that its free energy is 

the sum of a thermodynamic part and a nonlocal contribution (see 

Cahn and Hilliard, 1958, 1959; Lamorgese et al., 2011 ), i.e., 

G = ρRT 

∫ 
V 

˜ g dV, ˜ g ( φ, ∇φ) = g ( φ) + 

1 

2 

a 2 ( ∇φ) 
2 
, (1) 

where g is the dimensionless thermodynamic (i.e., coarse-grained) 

bulk free energy density, T is the temperature and V the volume, 

R is the gas constant, while a indicates a typical length. Equation 

(1) can be justified rigorously starting from Landau’s mean-field 

theory for a nonhomogeneous van der Waals fluid ( Landau and 

Lifshitz, 1980 ), showing that in addition to the above thermody- 

namic part, spatial inhomogeneities in the composition give rise 

to a nonlocal (square-gradient) component of the coarse-grained 

free energy, typical of the diffuse-interface model. That derivation 

is valid for equilibrium and nonequilibrium conditions alike. At lo- 

cal equilibrium, when the mixture is separated into two phases α
and β by a flat interfacial region, a surface tension can be obtained 

by integrating the specific (i.e., per unit volume) free energy along 

a coordinate z perpendicular to the interface, i.e., 

σ = 

1 

2 

a 2 ρRT 

∫ ∞ 

−∞ 

( ∇φ) 
2 
dz , (2) 

where we have considered that the composition of the mixture 

far from the interfacial region is constant. This result was first 

obtained by van der Waals (1894) in his treatment of the equilib- 

rium liquid–vapor interface for a single-component fluid and was 

applied by Cahn and Hilliard (1959) to a binary mixture (see also 

de Gennes, 1985 ). More recently, Pismen (2001) showed a system- 

atic derivation of the van der Waals square-gradient model based 

on a mean-field approximation along with a gradient expansion 

for the order parameter. This derivation was an intermediate re- 

sult ( Pismen and Pomeau, 20 0 0 ) as they were trying to obtain 

an expression for the disjoining pressure based on a more accu- 

rate free energy functional (with a more realistic representation 

of nonlocal interactions). On the other hand, Jacqmin (20 0 0) per- 

formed a careful matched asymptotic analysis showing that, in 

the limit of vanishing interfacial width, the diffuse-interface model 

is consistent with the usual Marangoni-type boundary conditions 

that arise in the classical formulation of two-phase flow. Note that 

the asymptotic analysis of diffuse-interface models has been fur- 

thered considerably ( Magaletti et al., 2013; Sibley et al., 2013a ) 

since the Jacqmin (20 0 0) paper. In particular, recent work by Sibley 

et al. (2013a ) has shown that when a binary fluid diffuse-interface 

model is employed in conjunction with a tensorial mobility, the 

model allows the classical two-phase flow equations to be recov- 

ered to all orders in the Cahn number, in the limit as it tends to 

zero. 

Considering that the expression for the free energy, Eq. (1) , is 

valid also for systems far from equilibrium, the surface tension as 

defined in Eq. (2) is not necessarily confined to systems at ther- 

modynamic equilibrium. In fact, a similarly defined nonequilibrium 

surface tension had already been introduced in Ma et al. (1993) , 

Osborn et al. (1995) and Swift et al. (1996) , particularly for check- 

ing their lattice Boltzmann scheme in terms of the rate of decay of 

a flat interface (initially at equilibrium) which is instantaneously 

brought from the two-phase to the one-phase region. However, 

these authors did not clarify the role of the nonequilibrium surface 

tension in diffuse-interface models of emulsion flows far from the 

critical point, which is the primary objective of the work reported 

herein. 

Again, it should be stressed that Eq. (1) represents a coarse- 

grained expression of the free energy, so that a is in no way equal 

to the actual interfacial thickness. Assuming that the mixture has 

zero excess volume of mixing and zero excess entropy of mixing, 

the simplest expression for the thermodynamic free energy den- 

sity, g , corresponding to a perfectly symmetric, partially miscible 

binary mixture, is the sum of an entropic, ideal part, and a non- 

ideal, so-called excess part, with 

g = g 0 + φ ln φ + ( 1 − φ) ln ( 1 − φ) + �φ( 1 − φ) . (3) 

Here, g 0 is the free energy of both the pure components (they must 

be equal, since we are considering an ideally perfectly symmet- 

ric binary mixture), φ is the molar (and mass) concentration of 

species A , while � is the temperature-dependent Margules param- 

eter (see Sandler, 2006 ). Since the entropy of mixing for regular 

mixtures is equal to that for an ideal gas, the excess free energy 

of mixing cannot depend on temperature and, therefore, � and 

a 2 must be inversely proportional to T . Thus, considering that at 

the critical point (see below), when T = T c , � = �c = 2 , we may 

assume: 

� = 

2 T c 

T 
, a = 

ˆ a 

√ 

2 T c 

T 
= 

ˆ a 
√ 

�, (4) 

where ˆ a is a constant length, independent of the temperature. 

Since at constant pressure and temperature d g = μd φ, where μ = 

μA − μB is the dimensionless chemical potential difference, we 

obtain: 

μ = 

dg 

dφ
= ln 

φ

1 − φ
+ �( 1 − 2 φ) . (5) 

Phase separation occurs whenever the temperature of the sys- 

tem T is lower than the critical temperature T c . Imposing that at 
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