Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier.com/locate/ijmultiphaseflow

Mathematical modeling of transport phenomena during waterpipe smoking—a parametric study

S. Oladhosseini, G. Karimi*

Department of Chemical Engineering, Shiraz University, Shiraz 7134851154, Iran

ARTICLE INFO

Article history: Received 13 January 2016 Revised 26 June 2016 Accepted 27 June 2016 Available online 1 July 2016

Keywords: Waterpipe smoking Bubble hydrodynamics Fuchs theory Henry's law constant Smoking session Topographical study

ABSTRACT

Waterpipe (WP) smoking has spread worldwide and emerged as a global health issue in recent years. Yet only little is known on the details of transport phenomena and the compositions of smoke and particulates released during WP smoking. In this paper a general mathematical model is developed to study various processes occurring during the use of a WP. The model is used to assess the role of various design and operating conditions on the WP performance. In particular, the influence of water temperature, diameter of body pipe, depth of WP body immersed in the water, puff volume, water volume and puff frequency on the bubble hydrodynamics, the gaseous phase absorption and the removal of aerosols has been studied. Numerical results have indicated that the rate of gas absorption increases with the increase in depth of WP body immersed in the water, puff volume and the amount of water, and also with decrease in water temperature, diameter of body pipe and puff frequency. In addition, the removal of aerosols is improved with the increase in depth, radius and density of particles. The model results have also revealed that the major part of the pressure drop occurs in the water bowl.

© 2016 Elsevier Ltd. All rights reserved.

Abbreviations

COHb carboxyhemoglobin PAH polycyclic aromatic hydrocarbon WP waterpipe

1. Introduction

The waterpipe (WP), also named shisha, narghile, argileh, etc., is a traditional aid for tobacco smoking in Asia and Northern Africa. However, in recent years, its use has spread to North America and Europe as well (Grekin and Ayna, 2012). A typical WP consists of a head, body, water bowl and hose. While a common opinion among users is that WP is relatively safe, it has been shown that WP can deliver large quantities of polycyclic aromatic hydrocarbons (PAHs), aldehydes, tar, nicotine, and carbon monoxide (Al Rashidi et al., 2008; Monn et al., 2007; Sepetdjian et al., 2008; Shihadeh and Saleh, 2005) to the user. In addition, waterpipe tobacco smoking significantly increased expired air CO, carboxyhemoglobin (COHb), mean plasma nicotine concentration and heart rate (Blank et al., 2011; Cobb et al., 2012; Eissenberg and Shihadeh, 2009).

When WP is used, air is drawn over the head and heated by the burning coals, a portion of it participating in the coal combustion,

* Corresponding author. E-mail address: karimi1342@gmail.com, ghkarimi@shirazu.ac.ir (G. Karimi).

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.06.022 0301-9322/© 2016 Elsevier Ltd. All rights reserved. as evinced by the visible red glow that appears during each puff. The air and combusted gases are then passed through the tobacco, where due to hot air convection and thermal conduction from the coal, the mainstream smoke aerosol is produced. Smoke in the form of a dispersed phase of bubbles moves toward the continuous liquid phase in a water container or the bowl (Shihadeh, 2003). Because of the long path traversed by the smoke as it passes from the head, through the body, to the water bowl, and through the hose to the smoker, there are plenty opportunities for gas and particulate phase deposition, diffusion, and evaporation/condensation processes to occur (Shihadeh and Saleh, 2005).

The motion and removal of aerosols, suspended in the rising bubbles in a water bowl, is particularly important in WP. In fact the water bowl is the most important part of the WP filter, retaining 82–91% of the filtered tar. The remainder is absorbed by the walls of the body and the hose. The water filter retains the gaseous components according to their absorption coefficients (Rakower and Fatal, 1962). Monn et al. (2007) looked at the particle size emission from a WP and concluded that compared with cigarette, WP emits a much greater amount of ultrafine particles in the range of 0.02–1 μ m, particularly from the burning charcoal.

Unlike the researches of cigarette smoking machine which are well standardized by Federal Trade Commission (FTC), the studies of WP smoking machines do not consider the effect of tobacco type (Moassel, Ajami, etc.), the contribution and the effect of charcoal replacement or movement, and the effects of different

Nomenclature	
AR	single bubble surface, m^2
C	Cunningham correction factor
C_L	molar density of the bulk water, kmol/m ³
d_1	diameter of WP head, m
d_2	diameter of WP body, m
d_3	diameter of water bowl, m
d_4	diameter of hose, m
d _B	diameter of bubble, m
u_{0}	which is immersed in water) m
d_{T}	diameter of tobacco particle m
D	aerosol diffusivity, m ² /s
D_s	diffusivity, m ² /s
f	aerosol friction coefficient, kg/s
f_2	Moody friction factor in the WP body (part 2)
f_4	Moody friction factor in the WP hose (part 4)
g	gravitational acceleration, m/s ²
H_1	height of tobacco bed, m
Н2 Ц	neight of Dody, m
пз Н	height of hose m
H _c	Henry's law solubility constant of gaseous compo-
115	nent in water, mol/ m^3 pa
H_s^{θ}	Henry's law solubility constant of gaseous compo-
	nent in water at T^{θ} , mol/m ³ pa
k	Boltzmann's constant, J/K
K _{Hs}	Henry's law volatility constant of gaseous compo-
V	nent in water, pa
K _{LS}	liquid-phase mass transfer coefficient of component
K*	s, III/s liquid-phase mass transfer coefficient of component
ICLS	s under the reference conditions. m/s
$K_{LS}(M)$	K_{Is} when parameter M is investigated and all other
	parameters are held constant, m/s
Кп	Knudsen number
$K_r(M)$	relative liquid-phase mass transfer coefficient when
T	parameter M is investigated.
L ₄	the topographic and modeling parameters $(M-T, d)$
111	H_2 V $_{\rm cr}$ and V_1)
Mc	smoke molar mass. kg/kmol
Mw	molecular weight of water, kg/kmol
Mw_s	molecular weight of gaseous component, kg/kmol
п	Puff number
n _{puff}	number of puff cycles in an average session
N	total number of aerosols in a bubble
N ₀	total number of aerosols corresponding to zero path
Na N.	Avogadro's number
Nnc	frequency of hubble formation (i.e. the number of
тъ	bubbles formed per puff)
N _{Bs}	amount of component s absorbed from single bub-
	ble during the rising period, kg
N _{puffs}	amount of component s absorbed during each puff,
	kg
N _{tot}	total absorption during the <i>n</i> puff, kmol
N _{tots}	absorption of component s during the n puff, kg
INts	absorption of component's during the smoking ses-
Nr."	rate of mass transfer of component s kg/m ² s
N_{ts}^*	absorption of component s during the smoking ses-
	sion under the reference conditions, kg

1.13 (111)	N_{ts} when parameter M is investigated and all other
	parameters are held constant, kg
$N_r(M)$	Relative absorption during the smoking session
	when parameter M is investigated
Patm	atmospheric pressure, pa
P_B	pressure inside the bubble, pa
Q_{puff}	flow rate of puff, m ³ /s
R_B	radius of bubble, m
R_p	radius of particle, m
Reo	Reynolds number
t _c	exposure time, s
t _{puff}	puff duration, s
Т	temperature in the water bowl, °C
T_G	smoke temperature, K
T ^K	temperature, K
10	reference temperature, <i>K</i>
U_o	mean velocity at the end of the body which is im-
	mersed in water, m/s
U_1	mean velocity in the WP head (part 1), m/s
U_2	mean velocity in the WP body (part 2), m/s
U ₃	mean velocity in the base (part 3), m/s
U_4	mean velocity in the nose (part 4), m/s
U_k	mean velocity in part $K = 1, 2, 3$ and 4, m/s
U _B	bubble fishing velocity, iii/s
V _B	average volume of the detached bubble, in ³
VL	water volume in the bowl, in-
v _{puff}	mole fraction of dissolved gaseous component in
Λ_{S}	the water in equilibrium
X	mole fraction of gaseous component in water for
150	initial of each nuff
Va	mole fraction of gaseous component in smoke
ys 7	vertical unwards coordinate m
~	verticul, upvurus coordinate, m
Greek sy	vmbols
Greek sy α _d	mbols Brownian aerosol removal coefficients, m ⁻¹
Greek sy α _d α _i	mbols Brownian aerosol removal coefficients, m ⁻¹ inertial aerosol removal coefficients, m ⁻¹
Greek sy α _d α _i α _j	mbols Brownian aerosol removal coefficients, m ⁻¹ inertial aerosol removal coefficients, m ⁻¹ aerosol removal coefficients due to various mecha-
Greek sy α _d α _i α _j	mbols Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1}
Greek sy α_d α_i α_j α_s	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1}
Greek sy α_d α_i α_j α_s α_t	<i>mbols</i> Brownian aerosol removal coefficients, m ⁻¹ inertial aerosol removal coefficients, m ⁻¹ aerosol removal coefficients due to various mecha- nism <i>j</i> , m ⁻¹ sedimentation aerosol removal coefficients, m ⁻¹ total aerosols removal coefficient, m ⁻¹
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ²
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_2	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ²
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_3	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the water bowl (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ²
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_4	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the WP hose (part 4), N/m ²
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_k	<i>mbols</i> Brownian aerosol removal coefficients, m ⁻¹ inertial aerosol removal coefficients, m ⁻¹ aerosol removal coefficients due to various mecha- nism <i>j</i> , m ⁻¹ sedimentation aerosol removal coefficients, m ⁻¹ total aerosols removal coefficient, m ⁻¹ the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ²
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_{tot}	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ²
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_{tot} ε_T	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the WP hose (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smaleo. k/m^3
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_{tot} ε_T ρ_G α	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the WP hose (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of liquid kg/m ³
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_{tot} ε_T ρ_G ρ_L 2	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP hody (part 2), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of liquid, kg/m ³
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_{tot} ε_T ρ_G ρ_L ρ_p γ_T	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of aerosol, kg/m ³
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_{tot} ε_T ρ_G ρ_L ρ_p μ_G	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of liquid, kg/m ³ viscosity of smoke, kg/m s
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_{tot} ε_T ρ_G ρ_L ρ_p μ_L ν_C	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of aerosol, kg/m ³ viscosity of smoke, kg/m s viscosity of water, kg/m s kinematic viscosity of smoke, m^2/s
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_{tot} ε_T ρ_G ρ_L ρ_p μ_G μ_L ν_G ν_c	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of aerosol, kg/m ³ viscosity of smoke, kg/m s viscosity of smoke, kg/m s viscosity of water, kg/m s kinematic viscosity of smoke, m ² /s molar volume of the solute at normal boiling point
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_k ΔP_{tot} ε_T ρ_G ρ_L ρ_p μ_G μ_L ν_G ν_s	<i>mbols</i> Brownian aerosol removal coefficients, m ⁻¹ inertial aerosol removal coefficients, m ⁻¹ aerosol removal coefficients due to various mecha- nism <i>j</i> , m ⁻¹ sedimentation aerosol removal coefficients, m ⁻¹ total aerosols removal coefficient, m ⁻¹ the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of aerosol, kg/m ³ viscosity of smoke, kg/m s viscosity of smoke, kg/m s kinematic viscosity of smoke, m ² /s molar volume of the solute at normal boiling point, m ³ /kmol
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_k ΔP_k ΔP_tot ε_T ρ_G ρ_L ρ_p μ_G ν_S α_t α_s α_t α_s α_t α_s α_t ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_5 α_f α_f α_f α_f α_f α_f α_f α_f α_f α_f α_f ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_6 α_f	<i>mbols</i> Brownian aerosol removal coefficients, m ⁻¹ inertial aerosol removal coefficients, m ⁻¹ aerosol removal coefficients due to various mecha- nism <i>j</i> , m ⁻¹ sedimentation aerosol removal coefficients, m ⁻¹ total aerosols removal coefficient, m ⁻¹ the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of aerosol, kg/m ³ viscosity of smoke, kg/m s viscosity of smoke, kg/m s kinematic viscosity of smoke, m ² /s molar volume of the solute at normal boiling point, m ³ /kmol surface tension of liguid N/m
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_k ΔP_k ΔP_tot ε_T ρ_G ρ_L ρ_p μ_L ν_G ν_s σ_L λ	<i>mbols</i> Brownian aerosol removal coefficients, m ⁻¹ inertial aerosol removal coefficients, m ⁻¹ aerosol removal coefficients due to various mecha- nism <i>j</i> , m ⁻¹ sedimentation aerosol removal coefficients, m ⁻¹ total aerosols removal coefficient, m ⁻¹ the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of aerosol, kg/m ³ viscosity of smoke, kg/m s viscosity of water, kg/m s kinematic viscosity of smoke, m ² /s molar volume of the solute at normal boiling point, m ³ /kmol surface tension of liquid, N/m mean free path of the gas molecules m
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_k ΔP_k ΔP_tot ε_T ρ_G ρ_L ρ_p μ_L ν_G ν_s σ_L λ τ_T	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of smoke, kg/m ³ viscosity of smoke, kg/m s viscosity of water, kg/m s kinematic viscosity of smoke, m ² /s molar volume of the solute at normal boiling point, m ³ /kmol surface tension of liquid, N/m mean free path of the gas molecules, m characteristic time s
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_k ΔP_k ΔP_tot ε_T ρ_G ρ_L ρ_p μ_L ν_G ν_s σ_L λ τ_p ω_0	<i>mbols</i> Brownian aerosol removal coefficients, m^{-1} inertial aerosol removal coefficients, m^{-1} aerosol removal coefficients due to various mecha- nism <i>j</i> , m^{-1} sedimentation aerosol removal coefficients, m^{-1} total aerosols removal coefficient, m^{-1} the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of aerosol, kg/m ³ viscosity of smoke, kg/m s viscosity of smoke, kg/m s kinematic viscosity of smoke, m ² /s molar volume of the solute at normal boiling point, m ³ /kmol surface tension of liquid, N/m mean free path of the gas molecules, m characteristic time, s association parameter of the solvent (- 2.26 for wa-
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_k ΔP_k ΔP_k ΔP_tot ε_T ρ_G ρ_L ρ_p μ_L ν_G ν_s σ_L λ τ_p φ	<i>mbols</i> Brownian aerosol removal coefficients, m ⁻¹ inertial aerosol removal coefficients, m ⁻¹ aerosol removal coefficients due to various mecha- nism <i>j</i> , m ⁻¹ sedimentation aerosol removal coefficients, m ⁻¹ total aerosols removal coefficient, m ⁻¹ the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of aerosol, kg/m ³ viscosity of smoke, kg/m s viscosity of smoke, kg/m s kinematic viscosity of smoke, m ² /s molar volume of the solute at normal boiling point, m ³ /kmol surface tension of liquid, N/m mean free path of the gas molecules, m characteristic time, s association parameter of the solvent (= 2.26 for wa- ter as solvent)
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_4 ΔP_k ΔP_tot ε_T ρ_G ρ_L ρ_p μ_G μ_L v_G v_s σ_L λ τ_p φ	<i>mbols</i> Brownian aerosol removal coefficients, m ⁻¹ inertial aerosol removal coefficients, m ⁻¹ aerosol removal coefficients due to various mecha- nism <i>j</i> , m ⁻¹ sedimentation aerosol removal coefficients, m ⁻¹ total aerosols removal coefficient, m ⁻¹ the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of aerosol, kg/m ³ viscosity of smoke, kg/m s viscosity of water, kg/m s kinematic viscosity of smoke, m ² /s molar volume of the solute at normal boiling point, m ³ /kmol surface tension of liquid, N/m mean free path of the gas molecules, m characteristic time, s association parameter of the solvent (= 2.26 for wa- ter as solvent) volume fractions of smoke
Greek sy α_d α_i α_j α_s α_t $\Delta_{sol}H$ ΔP_1 ΔP_2 ΔP_3 ΔP_4 ΔP_4 ΔP_k ΔP_tot ε_T ρ_G ρ_L ρ_p μ_G μ_L v_G v_s σ_L λ τ_p φ φ_G φ_U	<i>mbols</i> Brownian aerosol removal coefficients, m ⁻¹ inertial aerosol removal coefficients, m ⁻¹ aerosol removal coefficients due to various mecha- nism <i>j</i> , m ⁻¹ sedimentation aerosol removal coefficients, m ⁻¹ total aerosols removal coefficient, m ⁻¹ the enthalpy of solution, J/mol pressure drop in the WP head (part 1), N/m ² pressure drop in the WP body (part 2), N/m ² pressure drop in the water bowl (part 3), N/m ² pressure drop in the WP hose (part 4), N/m ² pressure drop due to part k=1, 2, 3 and 4, N/m ² total pressure drop, N/m ² porosity of tobacco bed density of smoke, kg/m ³ density of aerosol, kg/m ³ viscosity of smoke, kg/m s viscosity of smoke, kg/m s kinematic viscosity of smoke, m ² /s molar volume of the solute at normal boiling point, m ³ /kmol surface tension of liquid, N/m mean free path of the gas molecules, m characteristic time, s association parameter of the solvent (= 2.26 for wa- ter as solvent) volume fractions of smoke volume fractions of smoke

Download English Version:

https://daneshyari.com/en/article/7060246

Download Persian Version:

https://daneshyari.com/article/7060246

Daneshyari.com