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a b s t r a c t 

Scalar dissipation rate (SDR) is a key quantity in turbulent flow modeling since it measures the scalar 

mixing intensity. It is well known that turbulence-scalar interaction (TSI) processes play an essential role 

in turbulent scalar mixing and drive to a large extent the SDR evolution. These processes are character- 

ized by the tensor inner product between the scalar gradient vector and the strain-rate tensor. Direct 

numerical simulations are conducted to analyze the physics of this interaction in vaporizing turbulent 

two-phase flows. The well known alignment of the scalar gradient with the most compressive principal 

direction of the strain-rate tensor – resulting in production of the scalar gradient by turbulence – is re- 

covered in statistics collected sufficiently far from the liquid–gas interface. By contrast, the action of the 

turbulence-scalar interaction is progressively attenuated as we approach this interface, where the scalar 

gradient tends to have a direction intermediate between the extensive and the compressive directions. 

This result questions the validity of passive-scalar turbulence concepts and closures that are commonly 

used for to tackle the modeling of scalar behavior in vaporizing two-phase flows featuring (or not) sub- 

sequent chemical reactions. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

It is commonly admitted that the scalar dissipation rate (SDR), 

which is defined as the product of the scalar diffusivity with the 

squared scalar gradient, provides a good measure of the molec- 

ular mixing efficiency ( Bilger, 2004 ). This quantity indeed settles 

the equivalence ratio probability density function (PDF) the impor- 

tance of which is crucial for combustion ignition. The considera- 

tion of its transport equation shows that, in gaseous conditions, it 

is mainly driven by two terms: (i) a dissipation contribution and 

(ii) the third-order correlation between the velocity gradient ten- 

sor and the small-scale scalar anisotropy tensor. The scalar mix- 

ing efficiency thus appears to be controlled by the latter quantity, 

which is often denoted as the turbulence-scalar interaction (TSI) 

term. It can be shown that only the symmetric part (rate of strain) 

of the velocity gradient tensor contributes to this term; the anti- 

symmetric part indeed modifies the orientation of the scalar gra- 

dient but not its magnitude. Then the classical approach is to an- 

alyze this contribution in the eigenframe of the rate of strain ten- 

sor ( Betchov, 1956; Tsinober, 2009 ). Such analyses show that, in 
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homogeneous isotropic turbulence (HIT), the scalar gradient tends 

to align with the most compressive direction, thus leading to SDR 

production. However, the presence of a density jump with mass 

exchange at the interface is expected to modify this classical pic- 

ture. For instance, it has been recently established that propagat- 

ing premixed flames may change the sign of this specific contri- 

bution with SDR production ensured by other terms in the SDR 

budget ( Chakraborty et al., 2011; Chakraborty and Swaminathan, 

20 07; Mura et al., 20 08 ). Clearly, the presence of an interface with 

mass exchange is thus expected to promote similar changes in tur- 

bulent flows with vaporization. The influence of vaporization on 

mixture fraction statistics, i.e. scalar PDF, has been early antici- 

pated by Borghi (1996) and recently analyzed in detail by Duret 

et al. (2012a ). Considering the close relation that exists between 

the one-point one-time scalar PDF and micro-mixing term ( Chen 

et al., 1989 ), we expect that the vaporization effects will also af- 

fect the SDR dynamics. To the best of the authors’ knowledge this 

issue has never been addressed in the scientific literature and this 

is the objective of the present study to scrutinize this influence. 

The present manuscript is organized as follows: the next sec- 

tion introduces the numerical methodology that is used to con- 

struct a Direct Numerical Simulation (DNS) database of turbu- 

lent two-phase flows with vaporization. The derivation of the 

scalar dissipation rate transport equation is then discussed in 

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.06.020 

0301-9322/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.06.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmultiphaseflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2016.06.020&domain=pdf
mailto:arnaud.mura@ensma.fr
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.06.020


Z. Bouali et al. / International Journal of Multiphase Flow 85 (2016) 326–335 327 

Section 3 within the framework of the two-phase flow conditions 

that are presently investigated. The core of the present study fol- 

lows in Section 4 , which offers a detailed investigation of the TSI 

contribution. It is based on a classical orientation analysis, which is 

performed in the eigenframe of the strain-rate tensor. Finally, the 

manuscript ends with a brief section of conclusions where some 

perspectives for future works are also presented. 

2. Numerical methods 

2.1. Navier–Stokes solver and interface tracking method 

A detailed presentation of the computational method may be 

found elsewhere ( Duret et al., 2012a ), and only its salient ingre- 

dients will be recalled below. The computations make use of a 

joint level-set volume-of-fluid method, which is coupled to an in- 

compressible flow projection algorithm. The corresponding solver 

is used to perform the direct numerical simulation of incompress- 

ible flows described by the Navier–Stokes equations: 

∂ V 

∂t 
+ ( V . ∇ ) V = −∇ p 

ρ
+ 

1 

ρ
∇ . (2 μD ) + f + 

1 

ρ
σκδ(G ) n , (1) 

where p is the fluid pressure, V is the velocity vector, μ = ρν is 

the dynamic viscosity, and D is the viscous deformation tensor. At 

the interface, the surface tension force is taken into account: the 

quantity σ denotes the surface tension, n = ∇ G / | ∇ G | is the nor- 

mal unit vector pointing towards the liquid phase, and κ(G ) = ∇ . n 

is the curvature evaluated from the level set function G . To com- 

pute the spatial derivatives, a fifth-order WENO scheme is used 

for convective terms ( Shu, 1997 ), while a second-order central fi- 

nite difference scheme is employed for diffusive terms. A forcing 

method is required to maintain the turbulent kinetic energy at a 

prescribed level. This is achieved through the source term f in the 

righ-hand side of Eq. (1) , which induces a linear forcing ( Rosales 

and Meneveau, 2005 ), and results in f = A v ′ where A is the forc- 

ing coefficient, and v ′ denotes velocity fluctuations. In the present 

study, the operator (·) refers to volume averaging and a Reynolds 

decomposition is applied to the velocity field V = v + v ′ with v be- 

ing the mean flow velocity. 

A brief overview of the interface tracking method and treat- 

ment of discontinuities is now provided. The level set method uses 

a continuous function to describe the interface ( Osher and Fedkiw, 

2001; Sethian, 1996 ). This function is defined as the signed dis- 

tance between any points of the domain and the interface. The 

zero level curve ( G = 0 ) therefore provides the interface location. 

The transport equation that describes the motion of the interface 

reads: 

∂G 

∂t 
+ V . ∇ G = 0 . (2) 

Equation (2) is the hyperbolic type, and its discretization must 

combine a high convergence order and robustness. Thus, a fifth- 

order WENO scheme ( Shu, 1997 ) is used to discretize the convec- 

tive term in the above equation. Unfortunately the level set G no 

longer remains a distance function when solving Eq. (2) numeri- 

cally, and a renormalization algorithm is thus applied to keep it as 

the signed distance to the interface ( Sussman et al., 1998 ). How- 

ever, even if combined with such a redistancing algorithm, the nu- 

merical resolution may induce a loss of mass in under-resolved re- 

gions. Therefore, many extensions of the method have been pro- 

posed ( Enright et al., 2002; Olsson and Kreiss, 2005; Sussman 

and Puckett, 20 0 0 ). The coupled level-set/volume-of-fluid method 

(CLSVOF), see Sussman and Puckett (20 0 0) , was found to be well- 

suited to capture atomization processes ( Lebas et al., 2009; Menard 

et al., 2007 ). The main concept behind the CLSVOF method is to 

take benefit from the advantage of both level-set and VOF strate- 

gies: mass loss is limited through the VOF method, and a detailed 

description of interface properties is ensured with the level-set 

framework. 

Fluid dynamics equations are solved within the low Mach 

number framework, based on a projection method for the direct 

numerical simulation of incompressible Navier–Stokes equations 

( Tanguy and Berlemont, 2005 ). Density and viscosity depend on 

the sign of the level set function according to each phase (liquid 

and gas). Jump conditions across the interface are taken into ac- 

count with the ghost fluid (GF) method. In the GF method, ghost 

cells are defined on each side of the interface ( Kang et al., 20 0 0; 

Liu et al., 20 0 0 ), which prolongs the description of each phase be- 

yond the interface location so as to allow smooth derivatives com- 

putations in the vicinity of the interface. As defined above, the in- 

terface is characterized through the distance function, and jump 

conditions are extrapolated on a few nodes on each side of the in- 

terface. Further details on the implementation of the GF method to 

solve the Poisson equation with discontinuous coefficients can be 

found in Liu et al. (20 0 0) and Tanguy and Berlemont (2005) . 

2.2. Scalar transport equation 

2.2.1. Evolution equation 

The choice of the passive scalar is representative of an evap- 

oration process occurring at low temperature levels at the inter- 

face, inducing a low saturation pressure of vapor at the interface. 

In such a case, assuming local thermodynamic equilibrium at the 

liquid–gas interface, an evaluation of the saturation level of the 

vapor mass fraction Y v s can be made by means of the Clausius–

Clapeyron equation. In this study, the considered scalar ξ is the 

normalized form of the vapor mass fraction: ξ = Y v / Y v s . The scalar 

is thus equal to unity at the liquid–gas interface, and it evolves 

in the gas phase due to convection and diffusion. Following our 

previous investigation ( Duret et al., 2012a ), it is considered herein 

that the amount of mass transferred from the liquid into the gas 

phase is small enough to be neglected if the saturation equilib- 

rium is reached rapidly, which is the case. Therefore, the mass of 

liquid in the domain remains approximately constant while the va- 

por phase evolution is considered and analyzed. This assumption 

leads to no significant phase change, but it is of practical interest 

to the study of scalar mixing induced by vaporization when turbu- 

lence velocity fluctuations are greater than the Stephan flow veloc- 

ity. Moreover, as emphasized in our recent DNS studies on evapo- 

rating two-phase flows ( Duret et al., 2013a; 2014 ), considering the 

whole process of vaporization requires additional equations, such 

as energy and species equations, as well as additional jump con- 

ditions. Using such a formalism would undoubtedly improve the 

description of the vaporization process but it is not yet adapted 

for the present HIT configuration because of the confinement ef- 

fect due to periodic boundary conditions. 

The evolution equation of the inert scalar ξ may be written: 

∂ξ

∂t 
+ V . ∇ ξ = ∇ . (D ∇ ξ ) , (3) 

where D is the molecular diffusivity, which is evaluated from the 

viscosity values without any specific account of non-unity Schmidt 

number effects, i.e. D = νg . 

From the numerical point of view, a fifth-order WENO scheme 

is used to compute the convective terms, while for molecular con- 

tributions, a second-order central finite difference scheme is used. 

Finally, as stated above, the time integration is performed by using 

a third-order Runge–Kutta scheme. 

2.2.2. Interface boundary condition 

As far as reactive flows are concerned it is standard to consider 

a transport equation similar to Eq. (3) , but featuring a source term 

˙ ω ξ associated to the influence of vaporization on the concentration 
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