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a b s t r a c t 

The collapse of a nano-bubble near a solid wall is addressed here exploiting a phase field model recently 

used to describe the process in free space. Bubble collapse is triggered by a normal shock wave in the 

liquid. The dynamics is explored for different bubble wall normal distances and triggering shock inten- 

sities. Overall the dynamics is characterized by a sequence of collapses and rebounds of the pure vapor 

bubble accompanied by the emission of shock waves in the liquid. The shocks are reflected by the wall to 

impinge back on the re-expanding bubble. The presence of the wall and the impinging shock wave break 

the symmetry of the system, leading, for sufficiently strong intensity of the incoming shock wave, to the 

poration of the bubble and the formation of an annular structure and a liquid jet. Intense peaks of pres- 

sure and temperatures are found also at the wall, confirming that the strong localized loading combined 

with the jet impinging the wall is a potential source of substrate damage induced by the cavitation. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

1. Introduction 

The collapse of vapor bubbles near solid boundaries has been 

deeply investigated in the last century. The triggering episode goes 

back to the finding of the destructive effects of cavitation phenom- 

ena on the propellers of the great ocean liners at the beginning of 

the 20th century. Similar effects have been observed successively 

on the blade of big hydraulic machines like turbines and pumps 

( Silberrad, 1912; Leighton, 2012 ). Only recently, due to the increas- 

ing impact of the micro and nano-technologies, the attention from 

millimeter-size bubbles has shifted downwards, toward micro or 

sub-micro bubbles. Indeed in microfluidic devices, the so called lab 

on a chip , cavitation phenomena can be employed for microfluidic 

pumping ( Dijkink and Ohl, 2008 ), to enhance mixing by means of 

vorticity generation during the final stage of bubble collapse and 

for surface cleaning purposes ( Ohl et al., 2006 ). Cavitation bub- 

bles are also used in advanced medical procedures like high in- 

tensity focused ultrasound (HIFU) and extracorporeal shock wave 

lithotripsy (ESWL) ( Coussios and Roy, 2008 ) to enhance drug de- 

livery or increase local heat deposition deep within the body, to 

control localized cell membrane poration ( Sankin et al., 2010 ), and 

to comminute kidney stones ( Zhu et al., 2002 ). Moreover, the use 

of femtosecond lasers, generating nanometric bubbles, has recently 
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found important applications in nanosurgery of cells and tissues 

( Vogel et al., 2005; 2008 ). 

The experimental investigation has played the most important 

part in the understanding of bubble–wall interactions, so far. The 

improvements in the bubble generation techniques led to cleaner 

and better reproducible data, starting from the kinetic impulse 

technique ( Benjamin and Ellis, 1966 ). This approach suffers from 

the disadvantage that the bubble must be located before the ap- 

plication of the impulse. Successively the problem of localization 

has been overcome by means of the generation of the bubble by 

using an electric spark ( Naudé and Ellis, 1961; Tomita and Shima, 

1986 ). As a drawback, the electrodes perturb the bubble motion 

in the last stage of the collapse. At the moment, the best bubble 

generation technique is, probably, the non-intrusive pulsed-laser 

discharge ( Vogel et al., 1989 ) that can focus an intense local 

heating and vaporization of the liquid through application of a 

thermal impulse. The visualization of the bubble dynamics can 

be performed by illuminating the scene with diffuse backlighting 

( Blake and Gibson, 1981 ) and by means of high-speed cameras, up 

to 20 million frames per second ( Ohl et al., 1995 ). More recently, 

the μ-PIV technique has been used to measure the flow field 

during the bubble collapse ( Sankin et al., 2010 ). The experiments 

allowed the visualization of the jet formation during the bubble 

collapse near solid surfaces and the assessment of the role of 

shock-wave emission, jet-wall interaction and chemical effects on 

cavitation damage ( Benjamin and Ellis, 1966; Plesset and Ellis, 

1955 ). Notwithstanding the extreme frame-rate of modern cam- 

eras, the complete and detailed description of thermo-acoustic and 
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flow fields, is still lacking. The temperature and pressure inside 

the bubble at the collapse instant is not easily accessible with 

non-intrusive measurements. The pressure indeed can be only ex- 

trapolated by measuring it with an hydrophone at some distance 

from the bubble and by assuming a classical 1/ r decay ( Lauterborn 

and Vogel, 2013 ). The temperature instead can be estimated by 

matching a blackbody radiation with the measured spectrum of 

the emitted light upon collapse ( Flannigan and Suslick, 2005 ). 

On the other hand, the mathematical modeling of cavitation is 

still a great challenge. The cornerstone in the theory of bubble dy- 

namics was the pioneering work of Rayleigh (1917) who described 

the collapse of a bubble immersed in a unbounded incompressible 

liquid. Despite the significant simplifying assumptions, the corre- 

spondence with experimental results is still impressive. The model 

has been successively refined by taking into account compress- 

ibility effects in the liquid ( Keller and Kolodner, 1956; Hickling 

and Plesset, 1964 ) and the presence of a dilute gas in the bub- 

ble. These refined models provided an estimate of the pressure 

peaks reached inside the bubble on the order of hundred times 

the pressure of the liquid environment. Numerical simulations and 

more complex analysis followed ( Plesset and Chapman, 1971; Ples- 

set and Prosperetti, 1977; Shima and Sato, 1981 ) in order to de- 

scribe the effect of a nearby boundary. Different numerical tech- 

niques have been used in order to capture the interfacial dynamics, 

ranging from the Boundary Element Method (BEM) for irrotational 

conditions ( Blake and Gibson, 1981 ) to the Arbitrary Lagrangian 

Eulerian (ALE) schemes ( Tipton et al., 1992; Ding and Gracewski, 

1996 ). Recently more sophisticated models have been proposed to 

gain new insights on the effects of dissolved gas and phase change 

( Akhatov et al., 2001 ) and to obtain a deeper knowledge in fasci- 

nating phenomena like sonoluminescence ( Brenner et al., 2002 ). Of 

particular interest is the diffuse interface approach which enables 

a natural description of interfacial flows, changes of topology, va- 

por/liquid and vapor/supercritical fluid phase changes which have 

been shown to be crucial for the correct description of the final 

stages of the bubble collapse ( Magaletti et al., 2015 ). 

In this work we will exploit the diffuse interface model to nu- 

merically investigate the collapse of a sub-micron vapor bubble 

near solid boundaries. The effect of the initial bubble–wall dis- 

tance will be analyzed and the visualization of the entire flow and 

thermo-acoustic fields will be provided. Particular attention will be 

paid to the stress distribution on the solid wall and we will address 

the role of the different pressure waves on cavitation damage. 

The paper is organized as follows: in Section 2 the diffuse in- 

terface model and the relevant conservation equations is derived; 

Section 3 provides details on the numerical scheme and describes 

the numerical setting of the simulations; finally, the results of the 

numerical experiments will be discussed in Section 4 to finally 

draw conclusions and provide final comments in the last Section 5 . 

2. Mathematical model 

Thermodynamics of non-homogeneous systems 

We exploit an unsteady diffuse interface description ( Anderson 

et al., 1998 ) of the multiphase flow in a domain D based on the 

van der Waals gradient approximation of the free energy functional 

F [ ρ , θ ] ( Dell’Isola et al., 1995; Jamet et al., 2001 ): 

F [ ρ, θ ] = 

∫ 
D 

ˆ f dV = 

∫ 
D 

(
ˆ f 0 ( ρ, θ ) + 

λ

2 

| ∇ ρ| 2 
)

dV, (1) 

where ˆ f = 

ˆ f 0 + λ/ 2 |∇ρ| 2 with 

ˆ f 0 ( ρ, θ ) the classical Helmholtz 

free energy density per unit volume of the homogeneous fluid at 

temperature θ and mass density ρ . The coefficient λ( ρ , θ ), in gen- 

eral function of the thermodynamic state, embodies all the infor- 

mation on the interfacial properties of the liquid–vapor system (i.e. 

surface tension and interface thickness). In particular, for a van der 

Waals fluid, the free energy reads 

ˆ f 0 ( ρ, θ ) = R̄ ρθ

[
−1 + log 

(
ρ K θ1 /δ

1 − bρ

)]
− aρ2 , (2) 

with δ = R̄ /c v , R̄ the gas constant, c v the constant volume specific 

heat, a and b the van der Waals coefficients and K a constant re- 

lated to the de Broglie length ( Zhao et al., 2011 ). 

Equilibrium conditions 

The present paragraph summarizes, for the reader convenience, 

results concerning thermodynamic equilibrium for systems de- 

scribed by the free energy functional (1) . Although well known to 

specialists, we deemed useful to present a short summary to ratio- 

nalize this classical material which is hardly described comprehen- 

sively in literature, Jamet (1998) . 

At given temperature, equilibrium is characterized by the mini- 

mum of the free energy functional in Eq. (1) , where variations are 

performed with respect to the density distribution ρ . The evalua- 

tion of the functional derivative leads to the following equilibrium 

condition: 

μ0 
c − ∇ ·

(
λ∇ ρ

)
= const, (3) 

where the temperature is constrained to be constant, θ = const, 

and μ0 
c = ∂ ̂  f 0 /∂ρ| θ is the classical chemical potential. The equa- 

tion defines a generalized chemical potential μc = μ0 
c − ∇ ·

(
λ∇ ρ

)
that must be constant at equilibrium. 

The consequence of the above equilibrium conditions is better 

illustrated in the simple case of a planar interface, where the only 

direction of inhomogeneity is x , under the assumption of constant 

λ. The constant temperature appears in the equilibrium problem 

as a parameter and will not be further mentioned throughout the 

present section. Hence, determining the equilibrium density distri- 

bution amounts to finding a solution of 

μc = μ0 
c (ρ) − λd 2 ρ/dx 2 = μeq , (4) 

where the chemical potential in the bulk fluid (the vapor phase, 

say), far from the interface where d ρ/d x = 0 , determines the con- 

stant μeq = μ0 
c (ρV ) = μ0 

c (ρL ) . By multiplying Eq. (4) by d ρ/ dx and 

integrating between ρ∞ 

= ρV and ρ , leads to 

ˆ w 0 (ρ) − ˆ w 0 (ρV ) = 

λ

2 

(
dρ

dx 

)2 

, (5) 

where ˆ w 0 (ρ) = 

ˆ f 0 (ρ) − μeq ρ . Eq. (5) shows that ˆ w 0 has the same 

value in both the bulk phases, where the spatial derivative of mass 

density vanishes: ˆ w 0 (ρL ) = ˆ w 0 (ρV ) . 

The grand potential, defined as the Legendre transform of the 

free energy, 

� = F −
∫ 
D 
ρ

δF 

δρ
dV = 

∫ 
D 

ˆ w dV, (6) 

has the density ( actual grand potential density) 

ˆ w [ ρ] = ̂

 f − μc ρ = 

ˆ f 0 + 

λ

2 

(
dρ

dx 

)2 

−
(

μ0 
c − λ

d 2 ρ

dx 2 

)
ρ, (7) 

implying that, in the bulk, ˆ w = ˆ w 0 , i.e. ˆ w 0 is the bulk grand poten- 

tial density. 

Given the form of ˆ w 0 (ρ) , the solution of Eq. (5) provides the 

equilibrium density profile ρ( x ): 

x = 

√ 

λ

2 

∫ ρ

ρv 

dρ√ 

w 0 (ρ) − w 0 (ρV ) 
+ const. (8) 
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