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a b s t r a c t 

Two-dimensional solitary waves at the surface of a film flow down a vertical plane are considered. When 

the system is subjected to inlet white noise, solitary waves are formed after an inception region and 

interact with each other. Using open-domain simulations of reduced equation models, we investigate 

numerically their late time process dynamics. Close to the instability threshold, the waves synchronize 

themselves into bound states. For higher values of the Reynolds number, the separation distance between 

the waves increases and the synchronization process at work is weaker. Performing statistics, we show 

that the mean characteristics of the waves correspond to the minimal value of the mean film thickness 

along the traveling-wave branch of solutions. In this regime, synchronization occurs through the waves 

tails which is associated with a change of scaling of the waves features. A similar behavior is observed 

performing simulations in periodic domains: the selected waves maximize the mean flow rate. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Falling liquid films are widely used in industrial applications 

due to their interesting properties regarding heat and mass trans- 

fer. Interfacial waves intensify transfers by a factor up to two 

in comparison to the flat film situation ( Frisk and Davis, 1972 ), 

though the exchange surface undergoes an increment of only a few 

percent ( Portalski and Clegg, 1971 ). The reason for this paradox 

lies in the organization of the wavy motion of the film around iso- 

lated structures, or solitary waves, interacting one with the other 

through nearly flat regions of the film. These so-called solitary 

waves are composed of a main hump, a series of capillary ripples 

and a flat part called substrate. Whenever the amplitude of these 

waves is high enough, a recirculation region, i.e. a roll, appears in 

the main hump ( Rohlfs and Scheid, 2015 ): this mixing is a key el- 

ement to transfer intensification ( Yoshimura et al., 1996 ). At given 

flow conditions, the onset of recirculation regions is sensitive to 

the separation distance between waves and therefore to the fre- 

quency ( Rastaturin et al., 2006 ). It is thus essential to determine 

the preferred wavelength of the natural evolution of the film. This 

selection process is the subject of the current paper. 
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The onset of the different regimes of the film dynamics is func- 

tion of the reduced Reynolds number, denoted δ, and introduced 

by Shkadov (1977) . This parameter combines inertia, viscosity and 

surface tension and will be defined in Section 2.1 . When δ < 1.5, 

inertia effects are weak and the amplitude of the waves remains 

small (drag-gravity regime). Selection of the waves in this case has 

been the object of several works, within the framework of the 

hydrodynamic bound states theory, and based on various equa- 

tion models: the weakly nonlinear Kawahara equation ( Kawahara 

and Toh, 1988; Pradas et al., 2012; Tseluiko and Kalliadasis, 2014 ), 

the Benney equation ( Elphick et al., 1991 ), the Kapitza–Shkadov 

model ( Chang and Demekhin, 2002 ) and more recently the Ruyer- 

Quil–Manneville model ( Pradas et al., 2011 ). A discrete set of pre- 

ferred wavelengths is observed as waves tend to form bound states 

through interaction of their tails with the capillary ripples at the 

front of the next ones. These separation distances correspond to 

discrete values of stability of the waves with respect to infinitesi- 

mal perturbations, and to local minima of the viscous dissipation 

function along the traveling-wave branch of solitary waves. 

When δ > 1.5, the amplitude and speed of the waves increase 

drastically (drag-inertia regime). In that regime, the natural evolu- 

tion of the waves show some similarities with the inverse energy 

cascade observed in 2D turbulence ( Kliakhandler, 20 0 0 ). One can 

observe successively formation of linear waves, their non-linear 

saturation, evolution towards solitary waves through quasi periodic 

or subharmonic secondary instabilities, wave merging and increas- 

ing of the separation distance between solitary waves. The value 
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Fig. 1. Sketch of the problem setup. 

to which this separation distance converges is still an open ques- 

tion in the literature. It has been addressed only by Chang and De- 

mekhin (2002) but using the Kapitza–Shkadov model and making 

strong assumptions on the details of the dynamics. Other studies 

are available in the turbulent case on the coarsening of the so- 

called roll waves ( Balmforth and Mandre, 2004 ). 

Eventually, let us introduce the concept of optimal wave which 

is the main motivation of this study. It is due to Trifonov 

(2014) and corresponds to a minimum of the mean height along 

the traveling-wave branch of solitary waves. Short and long opti- 

mal waves are distinguished, depending on the value of the asso- 

ciated separation distance. We will show in this paper by means 

of time simulations of the Ruyer-Quil–Manneville model that the 

long-time dynamics of the film converges to these solutions. Links 

will be made with results from the linear stability analysis, and 

with the argument of minimal viscous dissipation. 

The paper is organized as follows. Section 2 presents the nu- 

merical tools. In Section 3 , we revisit the literature results in 

the drag-gravity regime ( δ > 1.5). Section 4 presents the re- 

sults obtained in the drag-inertia regime. Conclusions are given in 

Section 5 . 

2. Numerical tools 

2.1. Notations 

We consider a liquid film falling down a vertical plane ( Fig. 1 ). 

The flow is assumed to be Newtonian with constant physical prop- 

erties (surface tension σ , viscosity μ, density ρ). We denote by 

ν = μ/ρ the kinematic viscosity and g the acceleration of gravity. 

The current study is carried out in the 2D case, that is only by 

considering spanwise invariant waves with x being the coordinate 

in the direction of the flow and y the coordinate oriented in the 

normal direction to the plane. u and v refer to the velocity compo- 

nents in the two directions x and y . 

Two length scales can be defined balancing viscosity, accelera- 

tion of gravity and surface tension: the capillary length l c = 

√ 

σ/ρg 

and the viscous-gravity length l ν = ν2 / 3 g −1 / 3 . Adding the flat film 

thickness h̄ N (Nusselt thickness) allows to get a first set of non- 

dimensional parameters. It is composed of the Kapitza number � = 

(l c /l ν ) 2 and the Reynolds number Re = q̄ N /ν = h 3 
N 
/ 3 built from the 

flow rate q̄ N or the non-dimensional Nusselt thickness h N = h̄ N /l ν . 

The Kapitza number takes rather high values in practice which 

is not convenient from a numerical point of view. This led Shkadov 

( Shkadov, 1977 ) to introduce a specific non-dimensionalization, 

compressing the x coordinate by a factor κ with respect to 

the y direction. This factor is adjusted to balance the gravity 

force and the capillary pressure gradient, i.e. κ = (l c / ̄h N ) 
2 / 3 . The 

Shkadov scaling yields two non-dimensional numbers: the reduced 

Reynolds number δ = 3 Re/κ and a viscous dispersion parameter 

η = 1 /κ2 . It sets the coefficient of the capillary pressure term to 

one and makes explicit the balance of all forces in the equations 

(gravity, viscosity, surface tension and inertia). 

2.2. WRIBL model 

Hereinafter we will mimic the dynamics of the film based on 

the solutions to a reduced set of equations involving only two 

variables: the film thickness h ( x, t ) and the local liquid flow rate 

q (x, t) = 

∫ h 
0 udy . This model has been validated through compar- 

isons to DNS and experiments ( Kalliadasis et al., 2012 ) showing 

excellent agreement for the parameter range of interest. It allows 

to get access to the essence of the flow dynamics at reasonable 

computational costs. Let us briefly outline its derivation procedure 

starting from the governing equations. 

First, the long-wavelength nature of the instability enables to 

invoke a separation of scale between the x and y coordinates. 

In practice, this is performed by introducing a small parameter 

ε = ∂ x,t and ordering terms into powers of ε. Then, the classi- 

cal boundary-layer approximation is followed: pressure is com- 

puted after integration of the y -momentum balance where O ( ε2 ) 

inertial terms have been dropped out. Depth-averaging of the x 

momentum equation yields an evolution equation for the flow 

rate consistent up to O ( ε2 ). Let us mention that using specific 

weights through this latter procedure allows considerable alge- 

braic simplification (weighted-residual technique, see Kalliadasis 

et al. (2012) for more details). The so-obtained Weighted Resid- 

ual Integral Boundary Layer model is composed of a (exact) 

depth-averaged mass-conservation equation and a momentum- 

conservation equation. It is written as: 

∂ t h + ∂ x q = 0 , (1a) 
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As already underlined, this model is consistent up to O ( ε2 ) 

with the long-wave expansion and thus adequately accounts 

for the second-order viscous effects, i.e. the elongational vis- 

cous terms (last row of (1b) ), which are omitted in most low- 

dimensional models, for instance the classical Kapitza–Shkadov 

model ( Shkadov, 1967 ) as the viscous dispersion parameter η is 

generally small. Yet, the linear stability of the Nusselt base flow 

is significantly affected by the presence of these terms as they de- 

crease the speed of kinematic waves. We recall here that the im- 

balance of the kinematic-wave speed with the flow speed at the 

free surface is the key ingredient for the onset of the instability 

as pointed by Smith (1990) and Kalliadasis et al. (2012) within the 

Whitham wave-hierarchy framework ( Whitham, 1974 ). 
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