
International Journal of Multiphase Flow 84 (2016) 98–115 

Contents lists available at ScienceDirect 

International Journal of Multiphase Flow 

journal homepage: www.elsevier.com/locate/ijmultiphaseflow 

A two-phase solver for complex fluids: Studies of the Weissenberg 

effect 

R.A. Figueiredo 

a , C.M. Oishi b , ∗, A.M. Afonso 

c , I.V.M. Tasso 

a , J.A. Cuminato 

a 

a Instituto de Ciências Matemáticas e Computação (ICMC), Universidade de São Paulo Av. do Trabalhador São-Carlense, 400, São Carlos - SP, Brazil 
b Departamento de Matemática e Computação, Faculdade de Ciências e Tecnologia Universidade Estadual Paulista Júlio de Mesquita Filho, Presidente 

Prudente 19060-900, SP, Brazil 
c CEFT- Centro de Estudos de Fenómenos de Transporte, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto, 4200-465, 

Portugal 

a r t i c l e i n f o 

Article history: 

Received 30 October 2015 

Revised 12 April 2016 

Accepted 17 April 2016 

Available online 22 April 2016 

Keywords: 

Two-phase solver 

Viscoelastic flow 

Finite difference method 

Volume-of-Fluid 

Weissenberg effect 

a b s t r a c t 

In this work a new two-phase solver is presented and described, with a particular interest in the solu- 

tion of highly elastic flows of viscoelastic fluids. The proposed code is based on a combination of classical 

Volume-of-Fluid and Continuum Surface Force methods, along with a generic kernel-conformation ten- 

sor transformation to represent the rheological characteristics of the (multi)-fluid phases. Benchmark test 

problems are solved in order to assess the numerical accuracy of distinct levels of physical complexities, 

such as the interface representation, the influence of advection schemes, the influence of surface tension 

and the role of fluid rheology. In order to demonstrate the new features and capabilities of the solver in 

simulating of complex fluids in transient regime, we have performed a set of simulations for the problem 

of a rotating rod inserted into a container with a viscoelastic fluid, known as the Weissenberg or Rod- 

Climbing effect. Firstly, our results are compared with numerical and experimental data from the litera- 

ture for low angular velocities. Secondly, we have presented results obtained for high angular velocities 

(high elasticity) using the Oldroyd-B model which displayed very elevated climbing heights. Furthermore, 

above a critical value for the angular velocity, it was observed the onset of elastic instabilities driven by 

the combination of elastic stresses, interfacial curvature and secondary flows, that to the authors best 

knowledge, were not yet reported in the literature. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Direct numerical simulations of multiphase flows, in which the 

full continuum equations are solved on a sufficiently refined com- 

putational mesh to resolve all continuum scales, date back to the 

origin of computational fluid dynamics. During the last decades, 

however, major progresses have been made, by employing a vari- 

ety of numerical techniques for modeling two-phase flows, either 

using Lagrangian, Eulerian or Arbitrary Lagrangian–Eulerian (ALE) 

methodologies. Lagrangian and ALE methods usually represent in- 

terfaces accurately, but are rather complex to implement using 

mesh-dependent discretizations, due to the large mesh distortions 

involved in fluid flows ( Quan, 2011; Montefuscolo et al., 2014 ). In 

the ALE method, the mesh follows the interface between the fluid 

and the solid boundary and the governing equations are discretized 
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on a moving mesh. ALE algorithms require a mesh deformation 

strategy as the boundaries of the computational domain translate, 

rotate and deform in order to maintain mesh quality and validity. 

On the other hand, Eulerian methods are faster and easily paral- 

lelizable, but suffer from inherent difficulties for the accuracy of 

the interface representation, that has to be immersed on the fixed 

grid. One of the issues of these Eulerian techniques is the increased 

importance of surface effects (surface tension, Marangoni effects, 

etc.), quantified by very low capillary ( Ca ) or Weber ( We ) num- 

bers. In such cases, the inaccuracies in representing the exact posi- 

tion of the immersed interface generate approximations that are 

unbalanced, usually between surface, inertial and viscous forces, 

resulting in the so-called “parasitic currents”, a phenomenon that 

is well documented in the literature Raessi et al. (2009) . Addition- 

ally, time-step restrictions are a major concern. Since most of inter- 

face representations in Eulerian formulations are explicit in time, 

these restrictions prevent the simulation of real material proper- 

ties, to the point that recent multiphase codes cannot simulate 

flows with Reynolds number ( Re ) and Ca much lower than O (10 −2 ) 

( Hoang et al., 2013; Denner and van Wachem, 2015 ). Existing 
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Eulerian approaches to multiphase flows involve either marker par- 

ticles, like in Front-tracking techniques ( Tryggvason et al., 2001; 

Pivello et al., 2014 ), or marker functions as in the Level-set (LS) 

( Sussman et al., 1994; Scardovelli and Zaleski, 1999; Osher and 

Fedkiw, 2001; Sussman et al., 1998; Van der Pijl et al., 2005 ) and 

Volume-of-Fluid (VOF) ( Hirt and Nichols, 1981; Pilliod and Puck- 

ett, 2004 ) approaches. In order to obtain improved interface posi- 

tion and geometric properties such as curvature and normal vector 

(needed to compute surface tension), hybrid techniques are also 

available in the literature ( Sussman and Puckett, 20 0 0; Sussman 

et al., 2007 ), benefiting from the accurate mass conservation of the 

VOF method and the smooth interface description provided by the 

LS method. 

In recent years, Eulerian mesh-based methodologies have been 

used for solving interfacial complex fluid flows. Complexity does 

not arise only from the interaction of different fluid, but also from 

the physics that governs important phenomena. In some cases, 

more complex behaviors arise via rheological effects introduced by 

non-Newtonian and viscoelastic fluids. Many attempts for solving 

two-phase viscoelastic fluid flows have been presented in the lit- 

erature see for instance ( Pillapakkam and Singh, 2001; Yue et al., 

2005; Khismatullin et al., 2006; Stewart et al., 2008; Lind and 

Phillips, 2010; Habla et al., 2011; Izbassarov and Muradoglu, 2015 ). 

Despite of this increase in the development of numerical methods 

to deal with two-phase viscoelastic fluid flows, there is still un- 

solved numerical issues and challenges. In non-Newtonian fluids, 

elastic instabilities can occur even in the absence of inertia, as- 

sociated with large normal stresses and curvature of streamlines. 

From a computational perspective, these instabilities present a de- 

manding challenge, such as the High Weissenberg Number Prob- 

lem (HWNP), leading to the loss of convergence at very low level 

of elasticity, quantified by the Weissenberg number ( Wi ). Such nu- 

merical failure is usually attained at moderately low Weissenberg 

numbers ( Wi ∼ 1). This is particularly significant for multi-phase 

flows, where representing and tracking an interface with complex 

shape and dynamics are quite challenging. Therefore, the combina- 

tion of classical numerical methods to represent the interface, sur- 

face tension and curvature, along with stabilization techniques to 

handle the HWNP, can be considered as an useful and innovative 

framework in current computational rheology. 

The main objectives of this work are two-folded: (i) present to 

the scientific community, a validated new two-phase solver that 

can deal with multi-phase flows and fluids of complex rheology, 

and (ii) report interesting results obtained for the Weissenberg ef- 

fect, related to the dynamical aspects of the onset of elastic insta- 

bilities and unsteady flow patterns formed at high rod angular ve- 

locities. As far as we are aware, such flow features have not been 

reported in previous studies based on numerical simulations and 

it is the ability of this new solver that makes these predictions 

possible. This numerical framework combines the classic VOF and 

Continuum surface force (VOF-CSF) and the Height Function (HF) 

method, along with the generic kernel-conformation tensor trans- 

formations. To the authors knowledge, in the context of viscoelas- 

tic two-phase flows, it is the first work that describes the imple- 

mentation of the VOF method, using a piecewise linear interface 

construction method (PLIC) to reconstruct the interface and a least 

squares VOF interface reconstruction algorithm (ELVIRA), for solv- 

ing the HWNP. The code is verified with several benchmark tests, 

as the viscoelastic laminar lid-driven cavity flow, the axisymmet- 

ric concentric annulus with inner cylinder rotation and the droplet 

spreading of a viscoelastic fluid. Finally, we performed a set of sim- 

ulations for the application problem of a rotating rod inserted into 

a container with viscoelastic fluid, named the Weissenberg or Rod- 

Climbing effect. 

The paper is organized as follows. The governing equations used 

to define the dynamics of an isothermal and incompressible flow 

of complex multi-fluids are discussed in Section 2 . Section 3 de- 

scribes the numerical algorithms used in the finite difference code. 

The validation of the numerical formulations are presented in 

Section 4 . The obtained results and corresponding discussions of 

the numerical simulations for the Weissenberg effect are presented 

in Section 5 . Finally, the conclusions from this study are presented 

in Section 6 . 

2. Governing equations 

The flow is assumed to be isothermal, laminar, and the fluids 

incompressible. The governing equations are those expressing con- 

servation of mass 

∇ · u = 0 , (1) 

and conservation of momentum 

ρ

(
∂u 

∂t 
+ u · ∇u 

)
= ∇ · ( −pI + τ + 2 μs D ) + g + F , (2) 

where u is the velocity field, t is time, ρ is the density, μs is the 

Newtonian solvent viscosity, p is the pressure, g is the gravity force 

and F is the surface tension force. The symbol D = 

1 
2 (∇u + (∇u ) T ) 

is the rate of deformation tensor, τ is the elastic stress and I is the 

identity tensor. 

Several polymeric constitutive equations are implemented in 

the current version of the solver: the Oldroyd-B model ( Bird et al., 

1987 ), the linear form of the Phan-Thien–Tanner (LPTT) model 

( Phan-Thien and Tanner, 1977 ) and the Giesekus model ( Giesekus, 

1982 ). For an isothermal flow, these rheological equations of state 

can be written in a compact form as: 

∂ τ

∂t 
+ ( u · ∇ ) τ −

[
( ∇u ) 

T · τ + τ · ∇u 

]
= 

1 

λ
M ( τ) , (3) 

where M ( τ) is defined by the viscoelastic model 

M ( τ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 μp D − τ Oldroyd-B , 

2 μp D − τ − αλ

μp 
τ · τ Giesekus , 

2 μp D −
(

1 + 

ελ

μp 
tr ( τ) 

)
τ LPTT , 

−λξ ( τ · D + D · τ) 

(4) 

where λ is a relaxation time and μp is the polymer viscosity coeffi- 

cient. The stress coefficient function of the LPTT model, depends on 

the trace of τ , tr( τ), and introduces the dimensionless parameter ε
which is closely related to the steady-state elongational viscosity 

in extensional flows. The slip parameter, ξ , takes into account the 

non-affine motion between the polymer molecules and the con- 

tinuum. The polymer strands embedded in the medium may slip 

with respect to the deformation of the macroscopic medium, thus 

each strand may transmit only a fraction of its tension to the sur- 

rounding continuum. When ξ = 0 there is no slip and the motion 

becomes affine. The parameter ξ is responsible for a non-zero sec- 

ond normal-stress difference in shear, leading to secondary flows 

in ducts having non-circular cross-sections, which is superimposed 

on the streamwise flow. In the nonlinear term of the Giesekus 

model, α represents a dimensionless “mobility factor”. The amount 

of Newtonian solvent is controlled by the dimensionless solvent 

viscosity coefficient, β = 

μS 
μ0 

, where μ0 = μS + μP denotes the to- 

tal shear viscosity. 

An alternative form of describing viscoelastic models is by using 

the conformation tensor, A , as proposed by Fattal and Kupferman 

(2005) . In this formulation the velocity gradient is defined as 

∇u 

T = � + B + NA 

−1 , (5) 

where � and N are anti-symmetric tensors, B is symmetric and 

commutes with A . Thus the constitutive equation based on the 
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