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Abstract

This paper presents a continuation and optimization based algorithm to detect power flow unsolvability. In addition, the algorithm obtains
the power flow solution, if it exists, no matter how ill-conditioned the power system is. The proposed algorithm is based on the parameterization
of the distance from the starting point to the real power flow to be solved, using a convergence margin. The performance of the algorithm is
illustrated considering an highly loaded scenario of the operation of the Spanish power system.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Power flow is the key tool in power system planning and
operation. A power flow program provides the steady-state
solution of a power system scenario. A scenario is defined
by the network topology, the loads, the active power gen-
eration and the generator voltages. The power flow solution
of a scenario built from scratch is not always easy to reach.
Therefore, it is of great interest the development of a tool able
to determine the solvability of the power flow solution of a
scenario and to provide such solution, no matter how close
to the voltage collapse is the operating point.

The power flow problem is formulated as a set of non-
linear equations that includes parabolic and trigonometric
functions. Due to the non-linearity of the power flow equa-
tions, all the power flow methods developed in the literature
have been designed as iterative processes.

The first power flow method, now known as Gauss–Seidel
(GS), was developed during the 1950s[1]. However, the
most commonly method used for power flow calculation is
the Newton–Rhapson (NR) method, based on the succes-
sive solutions of the linear approximation of the power flow
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equations. The NR method exhibits better convergence condi-
tions than the GS method. The NR method became solvable
because of the development of high efficient sparse matrix
techniques for direct solution of linear equations systems[2].

The conventional power flow methods are known to have
difficulties to converge in case of ill-conditioned systems.
In such cases, the iterative process may either oscillate or
diverge. From a physical point of view, the non convergence
of the power flow equations of a power system can be due
to a number of features of the network, such as the genera-
tor voltages, the load of the system, the generation–demand
imbalance between the power system areas, etc. However,
convergence problems are due to the nature of power flow
system equations. The nature of power flow system equations
is quadratic (voltage magnitudes) and trigonometric (volt-
age angles). Therefore, as a consequence of this non-linear
nature, the power flow can be solvable or unsolvable. A solv-
able power flow has two different real solutions for the state
variables (voltages both magnitude and angle). However, an
unsolvable power flow has two different complex solutions
for the state variables, which are non admissible from a tech-
nical point of view since voltages magnitude and argument
are considered real variables.

It is important to remark the difference betweensolvabil-
ity and feasibility [3,4]. A feasible power flow not only is
solvable, but also all system variables (e.g. bus voltages, line
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flows) are within their limits, whereas only reactive power
generation limits are considered in power flow solvability
analysis. Usually it is possible to operate the system (at least
for a while) in the infeasible region, whereas any attempt
to operate it in the unsolvable region there would probably
result in system instability and voltage collapse[5,6].

Solvable and unsolvable region in parameter space are
separated by a boundary. In this boundary, a saddle-node
bifurcation exists, thus the Jacobian matrix of the power
flow equations is singular. If the power system is close to
the boundary, the Jacobian matrix is also close to singularity
and the system is ill-conditioned (high sensitivity from input
data to output results). The ill-conditioning of a power system
make the power flow algorithms convergence worse. Hence,
the solution of a solvable power flow problem could either
oscillate or diverge if the system is ill-conditioned.

Thus, the non convergence of a power flow can be due
to the proximity to voltage collapse or due to an unsolvable
operating point.

To overcome the non convergence of the standard NR
method, a number of developments have been undertaken.
Clements et al. incorporate in[7] a deceleration factor to the
state variables updating vector, controlled by the mismatches
evolution during the convergence process. Later, this step
size control has been optimized, not only improving the con-
vergence, but also using the deceleration factor as a power
flow solvability indicator. Braz et al. presents in[8] a critical
evaluation of three methods of step size optimization based
polar coordinates power flow methods developed in[9–11],
whereas step size optimization based rectangular coordinates
power flow are developed in[12,13].

However, these algorithms only identify when a case is
unsolvable, but do not provide any unsolvability measure.
Overbye presents in[3] an algorithm that not only identi-
fies unsolvable cases, but also provides a measure of how
unsolvable the case is. This unsolvability measure is based
in the minimum Euclidean distance between the operating
point, and the closest solvable operating point in the param-
eter space.

This paper presents a continuation and optimization based
algorithm to detect power flow unsolvability. In addition, the
algorithm obtains the power flow solution, if it exists, no
matter how ill-conditioned the power system is, thanks to con-
tinuation techniques robustness[12,14]. The proposed algo-
rithm is based on the parameterization of the distance from
the starting point to the specified power flow to be solved,
using a convergence margin. This convergence margin is
bounded between zero and one. The algorithm maximizes
the convergence margin subject to the augmented power flow
equations. If the convergence margin maximum is equal to
one the power flow solution is obtained, whereas if the con-
vergence margin maximum is less than one the power flow
is unsolvable. To solve the optimization problem, both con-
tinuation [14,15] and optimization[16,17] techniques are
employed. To combine continuation and optimization tech-
niques, a least-squares minimization based Lagrange multi-

pliers estimation is introduced[18], providing advantages of
both techniques: continuation robustness[12,14] and opti-
mization Lagrange multipliers, which can be used as useful
sensitivities[19,20] for post-optimization parameterization
algorithms[21,22].

The process starts considering an initial state variables
vector that corresponds to a initial power bus injections
different from the specified power bus injections. This ini-
tial state variables vector produces an unreal reactive power
generation, producing unreal reactive power generation lim-
its violations. To avoid unnecessary unreal reactive power
generation limits fixation, the full power flow convergence
process has been separated into two mainly steps: conver-
gencewithout considering reactive power generation limits
and convergenceconsidering reactive power generation lim-
its.

The paper is organized as follows: Section2 provides a
generic formulation of the continuation–optimization algo-
rithm. Section3 applies the algorithm presented in Section2
to the power flow, considering the reactive power generation
limits. Section4 illustrates the performance of the proposed
algorithm applied to a highly loaded hourly scenario of the
operation of the Spanish power system. Finally, Section5
contains the conclusions of the paper.

2. A mixed continuation–optimization approach to
the solution of non-linear equations

2.1. Overview of the algorithm

Let us start formulating a set of non-linear equations:

g(x, λ) = 0 (1)

wherex is the system state variables,g(x, λ) the augmented
system state equation, andλ is the convergence margin.

Two different augmented system state equationsg(x,
λ) formulations are used in this paper. One formulation
is employed for convergencewithout considering reactive
power generation limits, whereas convergenceconsidering
reactive power generation limits uses a different formulation.
Both augmented system state equationsg(x, λ) formulations
used in this paper will be detailed in Section3.

The convergence marginλ is bounded by zero and one.
Thus:

λ∈ [0, 1] (2)

The problem consists of maximizing the convergence mar-
gin λ subject to the set of non-linear Eq.(1) and the upper
bound of the convergence marginλ:

max λ

s.t. g(x, λ) = 0

λ− 1≤ 0

(3)



Download	English	Version:

https://daneshyari.com/en/article/706027

Download	Persian	Version:

https://daneshyari.com/article/706027

Daneshyari.com

https://daneshyari.com/en/article/706027
https://daneshyari.com/article/706027
https://daneshyari.com/

