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a b s t r a c t 

We propose a simple model of two-phase gas–liquid flow by imposing a quasi-equilibrium on the mix- 

ture momentum balance of the classical transient drift-flux model. This reduces the model to a single 

hyperbolic PDE, describing the void wave, coupled with two static relations giving the void wave velocity 

from the now static momentum balance. Exploiting this, the new model uses a single distributed state, 

the void fraction, and with a suggested approximation of the two remaining static relations, all closure re- 

lations are given explicitly in, or as quadrature of functions of, the void fraction and exogenous variables. 

This makes model implementation, simulation and analysis very fast, simple and robust. Consequently, 

the proposed model is well-suited for model-based control and estimation applications concerning two- 

phase gas–liquid flow. 

© 2016 Elsevier Ltd. All rights reserved. 

Introduction 

Multi-phase flow simulation models have evolved significantly 

over the last couple of decades. With the increase in computational 

power and sophistication of numerical schemes, simulating two- 

phase pipe flow no longer suffers the same limitations on compu- 

tational size, and state of the art high-fidelity models such as OLGA 

( Bendiksen et al., 1991 ) and LedaFlow ( Danielson et al., 2011 ) typ- 

ically run many times faster than real-time on a standard desktop 

computer. 

Before this development, however, significant efforts were de- 

voted to obtaining simplifications of multi-phase flow models 

which could ease implementation and increase their simulation 

speed. The Drift Flux Model (DFM) ( Ishii, 1977 ) was first proposed 
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by Zuber and Findlay (1965) as a correlation for predicting steady- 

state void-fraction profiles and later used in transient represen- 

tations of two-phase flow ( Pauchon and Dhulesia, 1994 ). In this 

form it is a simplification of the transient two-fluid model obtained 

by relaxing (i.e. imposing immediate steady-state on ( Flåtten and 

Lund, 2011 )) the dynamic momentum equation of each phase, re- 

placing them with a mixture momentum equation and a static re- 

lation typically called a slip law . 

Further simplification can be achieved by using a similar ap- 

proach to other parts of the dynamics deemed insignificant for the 

application at hand. Specifically, by imposing steady state on the 

momentum balance, the pressure wave dynamics are neglected, 

yielding so-called “No Pressure Wave” (NPW) models or “Reduced 

DFMs”. This simplification is motivated by applications for which 

slow gas propagation dynamics are more critical than fast pres- 

sure wave propagation. Furthermore, it has been shown that the 

validity of the drift-flux models representation of the fast pres- 

sure dynamics is imprecise in many scenarios due to the relax- 

ations involved in obtaining the DFM from the full formulation of 
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Baer and Nunziato (1986) , which lowers the sonic velocity ( Flåtten 

and Lund, 2011; Linga, Submitted ). Thus, if the “medium” complex- 

ity DFM representation of the pressure waves is imprecise, the ar- 

gument can be made that they could be discarded. 

This approach was used by Taitel et al. (1989) where the result- 

ing model was described by a single transient PDE of the liquid 

continuity, obtained by assuming incompressible liquid, and a set 

of steady-state relations. The resulting model was further investi- 

gated by Minami and Shoham (1994) where it was found to be 

amenable for certain scenarios. The approach was expanded upon 

by Taitel and Barnea (1997) , where the assumption of incompress- 

ible liquid was dropped, yielding two transient equations. A sim- 

ilar model was investigated by Masella et al. (1998) , here called 

the “No Pressure Wave” (NPW) model. More recent additions to 

the literature on models using quasi-equilibrium momentum bal- 

ance include ( Choi et al., 2013; Aarsnes et al., 2015; Ambrus et al., 

2015 ). 

Interestingly, many of these recent studies have not been mo- 

tivated by the desire to reduce computational complexity. Rather, 

the advent of computerized automation and optimization in the oil 

and gas industry has created new applications for various forms of 

simplified models, causing renewed interest in these models. 

Application 

Modern advances in the theory of dynamic systems have the 

potential of improving robustness and performance in the moni- 

toring, optimization and control of dynamic processes which can 

be described by an amenable mathematical model. By intelli- 

gently combining predictions from the mathematical model with 

information from multiple sensors one can estimate unmeasured 

quantities, optimize automatic control procedures, predict future 

behavior, and plan countermeasures for unwanted incidents. Such 

design techniques, often referred to as model-based estimation and 

control ( ̊Aström and Murray, 2010; Anderson and Moore, 1990 ), 

require a mathematical model with the proper balance between 

complexity and fidelity, i.e. the complexity must be limited to facil- 

itate the use of established mathematical analysis and design tech- 

niques, while the qualitative response of the process is retained. 

Models that achieve such balance between complexity and fi- 

delity are sometimes referred to as fit-for-purpose models. Obtain- 

ing such models often proves difficult for gas–liquid two-phase dy- 

namics due to the significant complexity and distributed nature of 

multi-phase pipe flow ( Aarsnes et al., 2014; 2016 ). 

If the appropriate model can be developed, however, it could 

see a wide range of uses in model-based control and estimation 

applications where two-phase pipe flow is encountered, such as 

underbalanced drilling of oil and gas wells ( Pedersen et al., 2015 ), 

well control (both in conventional and Managed Pressure Drilling) 

( Carlsen et al., 2008 ), riser gas handling ( Hauge et al., 2015 ), hydro- 

carbon production monitoring ( Bloemen et al., 2006; Teixeira et al., 

2014 ) and mitigating severe slugging during hydrocarbon produc- 

tion ( Eikrem et al., 2008; Esmaeil and Skogestad, 2011; Di Meglio 

et al., 2010a ). 

The drift flux model 

A popular model for representing one-dimensional two-phase 

flow dynamics in drilling and production at an acceptable fidelity 

is the classical three-state transient Drift Flux Model (DFM), see 

e.g. ( Lage and Time, 20 0 0; Fjelde et al., 20 03; Aarsnes et al., 2014 ). 

For certain boundary conditions, the existence of solutions has 

been proven ( Evje and Wen, 2013; 2015 ), and it is well known 

that the DFM is, in most practical situations, hyperbolic, with three 

(two fast and one slow) characteristic velocities ( Di Meglio, 2011 ). 

The two fast characteristics represent the fast pressure dynamics in 

the pipe, while the slow characteristic velocity is associated with 

the transport of matter, also sometimes referred to as the void 

wave ( Lorentzen and Fjelde, 2005; Masella et al., 1998 ). 

In this section we restate the classical equations of the transient 

drift-flux model and then cast the system in canonical form using 

the eigenvectors of the transport matrix, which poses the model 

as a single Riemann invariant governing the propagation of the 

void wave, coupled to the pressure dynamics, given by two PDEs, 

through the gas velocity. We then show how the approximation 

employed by e.g. ( Masella et al., 1998; Choi et al., 2013 ), using a 

static relation in place of a dynamic momentum balance, is related 

to relaxing both of the two PDEs describing the pressure dynamics. 

Both approaches lead to a mixed hyperbolic/parabolic system with 

a single hyperbolic PDE with a finite eigenvalue. 

The drift flux model equations 

We start the development of the proposed two-phase model 

from the classical Drift Flux Model (DFM) formulation, described 

by the following equations ( Gavrilyuk and Fabre, 1996; Evje and 

Wen, 2015 ): 

∂(αL ρL ) 

∂t 
+ 

∂(αL ρL v L ) 
∂x 

= �L , (1) 

∂(αG ρG ) 

∂t 
+ 

∂(αG ρG v G ) 
∂x 

= �G , (2) 

∂(αL ρL v L + αG ρG v G ) 
∂t 

+ 

∂(P + αG ρG v 2 G + αL ρL v 2 L ) 

∂x 
= S, (3) 

where the independent variables t, x represent time and position 

along the pipe, respectively, and the momentum source term, S is 

typically given as 

S = −ρm 

g sin θ (x ) − 2 fρm 

v m 

| v m 

| 
D 

(4) 

with the mixture relations 

ρm 

= αG ρG + αL ρL , v m 

= αG v G + αL v L , (5) 

and where αi , v i , ρ i , �i denote the volume fraction, velocity, den- 

sity and mass source term, respectively, of phase i = G, L (gas or 

liquid). Finally, f is the friction coefficient, D the hydraulic diam- 

eter, g is the acceleration of gravity and θ is the pipe inclination 

angle (relative to the horizontal). For the remainder of this section 

we will assume �L = �G = 0 . 

Eqs. (1) –(2) represent the mass balance for the liquid and gas 

phases, while (3) is the conservation of momentum for the gas–

liquid mixture. 

The following closure relations are needed to complete the sys- 

tem: 

αL + αG = 1 , P = c 2 G (T ) ρG , (6) 

where P is the pressure, and c G ( T ) is the speed of sound in the 

gas as a function of the temperature T , while the liquid density is 

assumed constant. Finally the slip law 

v G = 

v m 

1 − α∗
L 

+ v ∞ 

= C 0 v m 

+ v ∞ 

(7) 

where the profile parameter αL 
∗ ∈ [0, 1), usually given as the 

distribution parameter C 0 = 1 / (1 −α∗
L 
) , and drift parameter v ∞ 

≥
0 determine the relative velocity between the phases. These pa- 

rameters typically depend on factors such as superficial velocities 

and inclination ( Shi et al., 2005 ). Multiple correlations for obtain- 

ing α∗
L , v ∞ 

exist in the literature, see e.g. ( Zuber and Findlay, 1965; 

Bhagwat and Ghajar, 2014; Choi et al., 2012 ). 
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