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a b s t r a c t

A population balance model using a standard method of moments (S − γ ) in an Eulerian–Eulerian framework

has been used for oil and brine two-phase flow simulations in pipelines. Results have been compared to both

numerical and experimental data from the literature. The effects of the forces constituting the momentum

transfer term at the interphase between droplets and the continuous phase (drag, lift, turbulent dispersion

and virtual mass), turbulence modelling, break-up and coalescence parameters are analysed; they are shown

to be important for droplet mean diameter evolution. It has been demonstrated that a correct combination of

models and parameters improves (47% for the best case) simulated results when compared to experimental

data. Interactions between the different components of the whole model are discussed and their correspond-

ing effects on the droplet diameter predictions are explained. In particular, the addition of the lift force tends

to push the droplet toward the walls of the computational domain where turbulence and shear stress are the

strongest, therefore leading to an increased break-up rate. Based on the findings of this study, recommenda-

tions for further population balance-based modelling with a standard method of moments are provided.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

During the transport of oil and water through pipes, interactions

between the two fluids occur continuously. Considering oil as the

continuous phase and water as the dispersed phase, these strong

interactions can give birth to droplets being transported with the

continuous phase. Such droplets can potentially interact with each

other and with the pipe wall, leading to a complex physical be-

haviour. The correct prediction of droplets movement, size and shape

evolution is necessary to evaluate the deposition rate along with

other critical parameters influencing the flow such as separation and

pressure gradients.

The population balance method (PBM) solving the population bal-

ance equations (PBEs) currently stands as the reference method in

this field of study (Ramkrishna, 2000). PBE equations characterise the

evolution of the number of particles in a given region of the domain

through time. These equations require numerical models for closure.

For this purpose, several approaches, such as Monte Carlo methods

(Friesen and Dabros, 2003; Zhao et al., 2010; Marchisio et al., 2004),

have been used in the past. However, when using these methods, a

high number of droplets is required to achieve an accurate averag-

ing of their global evolution. Methods of classes have come as alter-

native solutions to overcome the computational expense induced by
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Monte Carlo approaches (Hounslow et al., 1988; Litster et al., 1995;

Ramkrishna, 2011). Within each class, the PBEs are solved directly for

the number density function. For instance, within a given range of

droplet sizes, the particle size distribution (PSD) is discretised into an

equivalent number of classes where the PBEs are solved. The number

of classes necessary to accurately represent a population of droplets

can therefore become very large. This is considered as the major

drawback of the method of classes.

In addition, the use of such method can be difficult. A mother

droplet that belongs to a specific class at a specific time may produce

for instance two or more child droplets during a break-up event that

will belong to other classes in the future.

Significant work has been performed over the past few years

to solve the PBEs at a relatively low computational cost. The most

promising approach is the method of moments, first introduced by

Hulburt and Katz (1964). This method consists in solving the PBEs

by tracking the moments of the particle size distribution. Several

itemisations of the method have emerged recently such as the stan-

dard method of moment (SMOM) (Hulburt and Katz, 1964; Marchisio

et al., 2002), the direct quadrature method of moments (DQMOM)

(McGraw, 1997) and the extended quadrature method of moment

(EQMOM) (Marchisio and Fox, 2013).

A standard method of moments has been used in the current

study. The equations of the moments contain unclosed integral terms

and therefore, additional modelling is required by assuming an initial

(log-normal) distribution of droplets. Such a method has been suc-

cessfully validated by Lo and Rao (2007). The S − γ standard method
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of moments model described in Lo and Rao (2007) is used here to

perform numerical simulations of brine droplets in oil in a horizon-

tal pipeline. This work has been performed with the commercial

CFD software StarCCM+ V8.02 (CD-Adapco, 2012). The study focuses

on the identification of key parameters influencing the droplet be-

haviour during their transport. For this purpose, several drag mod-

els have been implemented and tested. The lift, turbulent dispersion

and virtual mass force have been discussed. Parameters influencing

droplet behaviour in turbulence, break-up and coalescence models

parameters have also been investigated. Simulation results of droplet

diameter prediction have been compared and validated against both

numerical and experimental results from the literature.

Mathematical models

Models and physical effects taken into account in the simulations

performed with StarCCM+ will now be described. Continuity, mo-

mentum and turbulence equations derived here are part of the segre-

gated solver. The population balance modelling is performed with the

available S − γ model. Break-up and coalescence models used in this

work are also part of the software. Different drag models have how-

ever been implemented; their influence on the results is discussed in

the following sections.

Continuity, momentum and turbulence equations

For the Eulerian–Eulerian model, all phases are assumed to be in

an equilibrium state. Each phase has its own velocity, energy and ma-

terial properties. However, the conservation equations of each phase

need closure. This is achieved through the definition of the phase in-

teraction at each phase interface in each control volume. The conti-

nuity equation for an Eulerian–Eulerian model, in a general form, is

written as:

∂αiρi

∂t
+ ∇ · (αiρiui) =

∑
j �=i

(Kmass
i j − Kmass

ji ) + Smass
i . (1)

Subscripts i and j denote the continuous and dispersed phases. The

terms αi, ρ i, ui and Smass
i

refer to the volume fraction, the density, the

velocity vectors and the mass source term of phase i, respectively.

The transfer rates of mass (Kmass
i j

and Kmass
ji

) from one phase to

the next are both positive. Hence, for keeping the mass balance,

the following two relationships have to be satisfied during the

computation:∑
i

αi = 1 ;
∑

i

Smass
i = 0,

The momentum equations are:

∂αiρiui

∂t
+ ∇ · (αiρiuiui) = −αi∇p + αiρig + Mi + Fint

i

+∇ · [αi(τi + τ t
i )] +

∑
j �=i

(Kmass
i j uj − Kmass

ji ui) + Smom
i , (2)

where p stands for the pressure field, g is the gravitational accelera-

tion vector, F int
i

represents the internal forces acting on phase i, and

τ i and τ t
i

are the molecular and turbulent stress tensors, respectively.

The term Mi represents the sum of forces transmitted from one phase

to the next. This term is usually composed of different forces such as

drag (Fd
i j

), lift (F�
i j

), virtual mass (Fvm
i j

) and turbulent dispersion (Ftd
i j

).

The forces acting on the continuous phase due to the dispersed phase

must be equal in absolute value to the force acting on the dispersed

phase due the continuous phase:

Fi j = −F ji. (3)

The forces constituting the interphase momentum transfer term

(Mi) will be derived in the following sections.

The realizable k − ε turbulence model (Shih et al., 1994) was se-

lected as the population balance solver is accessible only through the

k − ε turbulence formulation. Eqs. (4) and (11) below give the trans-

port equation for the turbulent kinetic energy term (k) and the trans-

port equation for the turbulent dissipation term (ε), respectively.

∂αiρiki

∂t
+ ∇ · (αiρiuiki) = ∇ ·

[
αi

(
μi + μt

i

Pt
r,k

)
∇ki

]
+ αiSk,i

+αi

[
Ek,i + Eb,i − ρi((εi − ε0) + EY,i)

]
+

∑
j �=i

(Kmass
i j k(i j)

j
− Kmass

ji ki).

(4)

The terms μi and μt
i

denote the molecular and the turbulent dy-

namic viscosity, respectively. The dimensionless term Pr is the Prandtl

number. The production term Ek, in Eq. (4), represents the genera-

tion of turbulent kinetic energy due to the mean velocity gradient.

EY stands for the dissipation of turbulent kinetic energy due to the

contribution of fluctuating dilatation and ε0 is the ambient turbu-

lence value in the source terms that counteracts turbulence decay. Eb

is the production of turbulent kinetic energy due to buoyancy effects.

Finally, Sk is the source term for the turbulent kinetic energy. These

terms are expressed as:

Ek = μt R2 − 2

3
ρk∇ · u − 2

3
μt(∇ · u)

2
, (5)

R = |R| =
√

2R : RT =
√

2R : R, (6)

R = 1

2
(∇u + ∇uT ), (7)

Eb = β
μt

Pt
r,k

(∇T · g), (8)

β = − 1

ρ

(
∂ρ

∂T

)
p

, (9)

EY = 2kε

uSound

. (10)

R stands for the modulus of the mean strain rate tensor, β is the

thermal expansion coefficient and T is the temperature. The transport

equation for the turbulent dissipation term (ε) can be written as:

∂αiρiεi

∂t
+ ∇ · (αiρiuiεi) = ∇ ·

[
αi

(
μi + μt

i

Pt
r,ε

)
∇εi

]

+αi

[
Cε1Rε + εi

ki
(Cε1Cε3Eb,i) − εi

ki + √
νεi

Cε2ρi(εi − ε0)

]
+

∑
j �=i

(Kmass
i j ε(i j)

j
− Kmass

ji εi) + αiSε,i, (11)

where the coefficients of the model are defined as:

Cε1 = max

[
0.43,

Rk
ε

5 + Rk
ε

]
, (12)

Cε2 = 1.9, (13)

Cε3 = 1 if Eb ≥ 0, 0 if Eb < 0. (14)

The constants used in the terms Cε1, Cε2 and Cε3 follow the defi-

nition of the realizable k−ε model.

The turbulent dynamic viscosity is written as:

μt = ρCμ
k2

ε
, (15)
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