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a b s t r a c t

This article presents an assessment of the accuracy of gas flow rate measurement in gas–liquid pipe flows

by cross-correlating dual wire-mesh sensor signals. The differences between the estimated and the actual

gas superficial velocities in different flow regimes were analyzed. It was demonstrated that this gas flow rate

measurement method is susceptible to significant systematic errors, some of which are inherent to the use

of cross-correlation and others which are specific to wire-mesh sensors. It was concluded that this method

would be accurate only for flow conditions within narrow ranges.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

In many multiphase flow applications, the gas flow rate in gas–

liquid pipe flows has been estimated from the cross-correlation func-

tion of the outputs of two sensors , separated by a streamwise dis-

tance and capable of detecting gas–liquid interfaces (Beck, 1981). In

most studies (Thorn et al., 1997; Prasser et al., 2005a; Dong et al.,

2006; Beyer et al., 2010) the cross-correlation velocity was calculated

as the ratio of the distance between the sensors and the time lag cor-

responding to the peak in the cross-correlation function between the

signals provided by the two sensors; then, the time-averaged gas su-

perficial velocity (which is equal to the time-averaged gas flow rate

divided by the pipe cross-sectional area), was obtained by integrat-

ing the product of the measured time-averaged void fraction and the

cross-correlation velocity over a cross-section. Measuring systems

that have been used for gas flow rate measurements by the cross-

correlation method include conductivity probes, microwave sensors,

gamma-ray densitometers, wire-mesh tomographs and electrical re-

sistance tomographs. Despite the apparent success of this method

in several applications, its accuracy has been questioned. In partic-

ular, some authors have challenged the use of the cross-correlation

velocity as a surrogate for the gas velocity and have proposed the

use of models to correlate the cross-correlation velocity with the gas

flow rate (Lucas and Walton, 1998; Lysak et al., 2008; Shaban and

Tavoularis, 2015a). A review of the literature has revealed no system-
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atic scrutiny of all assumptions made for the direct application of the

cross-correlation method.

In the present work, we have investigated analytically and exper-

imentally the accuracy of measurements of the gas flow rate in dif-

ference regimes of gas–liquid flows by applying the cross-correlation

method to the output of a dual wire-mesh sensor (WMS). In partic-

ular, we have examined whether the cross-correlation method pro-

vides a gas velocity that is an accurate surrogate of the true gas su-

perficial velocity under different two-phase flow conditions. We first

present an analytical comparison of these two velocities, which is ap-

plicable to any measurement systems that use cross-correlation for

measuring gas flow rates, and then proceed to evaluate the accuracy

of measurements obtained in the bubbly, slug, churn and annular

flow regimes using WMS, as well as the importance of other sources

of error that are particular to WMS. We hope that this note will help

clarify the significance of the cross-correlation method in a broader

sense, as well as testing its accuracy in a specific experimental setup.

Analytical background

Gas superficial velocity

The time-averaged gas superficial velocity jg through a pipe with

an inner radius R can be calculated as

jg = Qg

πR2
= 1

T

1

πR2

∫ T

t=0

∫ R

r=0

∫ 2π

θ=0

U(r, θ , t)α(r, θ , t)r dθ dr dt, (1)

where Qg is the gas volumetric flow rate, t denotes time, r and θ are,

respectively, the radial and azimuthal coordinates, T is a time inter-

val that is sufficiently long for the time averages to converge, U is
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the instantaneous local velocity and α is the local void fraction; it is

noted that α = 1 and U = Ug when the location of concern is occupied

by gas, whereas α = 0 and U = Ul when this location is occupied by

liquid. In the following discussion, the subscripts l and g denote the

liquid and gas phases, respectively.

Eq. (1) shows that, to determine jg, one would require the spa-

tial and temporal distributions of both the instantaneous local gas

velocity Ug and the instantaneous local void fraction α. The spatial

and temporal distributions of void fraction may be measured with

the use of several different sensors; these include single-point sen-

sors (e.g., conductivity probes) traversed across the pipe, multi-point

sensors (e.g., wire-mesh sensors), which provide outputs at nodes of

a transverse grid, and tomographic sensors (e.g., electrical resistance

tomographs), which use reconstruction algorithms to obtain the spa-

tial distribution of the flow properties from discrete measurements.

In contrast, the temporal and spatial distributions of gas velocity can-

not be measured directly by any of these methods.

Gas velocity vs. interfacialvelocity

Instead of calculating the gas velocity, by analyzing the void frac-

tion output of a single sensor, one may identify the passage of a gas–

liquid interface through each measurement point (a sharp rise/drop

in void fraction); by analyzing the outputs of dual sensors, one may,

in principle, estimate the interfacial velocity. The interfacial velocity

is equal to the velocity of the liquid and gas in contact with a gas–

liquid interface at a measurement location. Note that the interfacial

velocity is a discrete function and is only defined at phase interfaces,

as opposed to the gas and liquid velocities, which are piecewise con-

tinuous functions. Consequently, the interfacial velocity at best rep-

resents the gas velocity at certain instants in time and it cannot take

into account gas motion in continuous gas structures, such as within

bubbles and in the gas core of annular flows.

Let us consider two sensors separated by a distance �x and let �t

be the time required by an interface to traverse the distance between

the two sensors (Fig. 1a). The velocity of an individual gas–liquid in-

terface, to be denoted as Uint, can be estimated as

Uint = �x

�t
. (2)

Ideally, individual interfaces may be identified by comparing the

outputs of two sensors in tandem, however, especially for intrusive

sensors, this approach would only be practical for relatively narrow

ranges of liquid and gas flow rates, due to flow distortion between

the sensors, caused by the first sensor or by turbulent fluctuations

in the flow. This flow distortion makes it very difficult to match the

interfaces in the signals from the two sensors (Fig. 1b).

Interfacial velocity vs. cross-correlation velocity

As a surrogate for the interfacial velocity, the cross-correlation ve-

locity Uxc can be easily calculated using the cross-correlation function

(CCF) of the signals of these sensors as

Uxc = �x

�tCCFmax

, (3)

where �tCCFmax
is the time lag corresponding to the peak in the cross-

correlation function between the void fraction signals at two corre-

sponding measurement locations in the two measurement sections.

Unlike Uint, which is a discrete function, Uxc is a single-valued prop-

erty, which is equal to the most probable value (mode) of Uint. Thus,

depending on the probability density function of the interfacial ve-

locities, Uxc may or may not be equal to the time-averaged interfacial

velocity.

To reduce the non-uniformity of the radial gas velocity profiles,

Prasser et al. (2005a) proposed that the nodal cross-correlation func-

tions be azimuthally averaged to produce the azimuthally averaged

Fig. 1. Time histories of void fraction at corresponding locations on an upstream sen-

sor (dashed line) and a downstream sensor (solid line) in a dual WMS unit: (a) at low

liquid flow rate (jl = 0.15 m/s) and (b) at intermediate liquid flow rate (jl = 0.8 m/s).

�t1 and �t2 are the time lags at the front and back of a Taylor bubble, respectively.

cross-correlation velocity Uxcr(r). A gas superficial velocity estimate,

to be denoted as jxc, can then be determined as

jxc = 1

πR2

∫ R

0

Uxcr(r)αr(r)2π r dr (4)

where αr(r) is the temporally and azimuthally averaged void fraction.

Effect of void fraction and gas velocity fluctuations on the

cross-correlation velocity

Starting from Eq. (1), one may apply a modified Reynolds decom-

position to decompose the instantaneous local fluid velocity and void

fraction into mean and fluctuating parts as

U(r, θ , t) = Ur(r) + U ′(r, θ , t) (5)

and

α(r, θ , t) = αr(r) + α′(r, θ , t), (6)

where the temporally and azimuthally averaged fluid velocity and

void fraction are defined as, respectively,

Ur(r) = 1

T

1

2π

∫ T

t=0

∫ 2π

θ=0

U(r, θ , t)dθ dt (7)

and

αr(r) = 1

T

1

2π

∫ T

t=0

∫ 2π

θ=0

α(r, θ , t)dθ dt, (8)

and primes indicate fluctuations. Substituting Eqs. (5) and (6) into

Eq. (1), one gets

jg = 1

T

1

πR2

∫ T

t=0

∫ R

r=0

∫ 2π

θ=0

[Ur(r) αr(r) + U ′(r, θ , t)α′(r, θ , t)

+Ur(r) α′(r, θ , t) + αr(r) U ′(r, θ , t)]r dθ dr dt. (9)
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