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a b s t r a c t

A new method for the determination of gas and liquid flow rates in vertical upward gas–liquid pipe flows
has been proposed. This method consists of an application of machine learning techniques on the
probability density function (PDF) and the power spectral density (PSD) of the normalized output of a
differential pressure transducer connected to two axially separated wall pressure taps in the pipe. The
two-phase flow regime was first identified by the application of the elastic maps method on the differential
pressure PDF. The transducer signal was then pre-processed using Principal Component Analysis, and inde-
pendent features were extracted using Independent Component Analysis. The extracted features were
used as inputs to multi-layer back-propagation neural networks, which gave the phase flow rates as out-
put. The present method was used to calibrate a differential pressure sensor to estimate the flow rates of
both phases in air–water flow in a vertical pipe of diameter 32.5 mm and in the pressure range from 100 to
140 kPa. Predictions of the present method were in good agreement with direct flow rate measurements.
Compared to previously used methods of feature extraction from differential pressure signals, the present
method was the only one to have a good, consistent performance over all flow regimes and for all flow con-
ditions encountered in this study.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

The present research was motivated by the need to measure
simultaneously and economically the liquid flow rates in a large
number of pipes containing air–water mixtures. This situation
arises in laboratory models of nuclear reactor header-feeder sys-
tems under conditions simulating hypothetical nuclear accidents,
such as loss-of-coolant accidents. In these cases, the feeder tubes
would supply emergency coolant to the fuel channels of the reactor
core and it is paramount that each feeder provides sufficient liquid
flow to adequately cool the corresponding fuel channel.

A thorough review of multiphase flow rate measurement meth-
ods was presented by Falcone et al. (2002) and Thorn et al. (2013).
A classical method of measuring the gas–liquid flow rates is the
separation of the flow into gas and liquid streams and then mea-
suring the flow rate of each stream using single phase flow meters.
This method is accurate and reliable, but it is also highly intrusive
and requires the use of expensive and bulky separators.

Methods that do not require phase separation, commonly
referred to as Multiphase Flow Meters (MFMs), have also been
developed. Ideally, MFMs would measure the void fraction and
both phase velocities directly. Numerous options exist for rela-
tively accurate measurements of void fraction, however, direct
measurement of either phase velocity is very hard for practical rea-
sons. The cross-correlation method is a common indirect approach
for estimating the interfacial velocity from the average time of
flight of the gas–liquid interfaces between two axially spaced sig-
nal detectors (for example, Dong et al. (2005) and Tan and Dong
(2006)). This method can only be used when there is a clearly
defined interface normal to the streamwise direction, as in bubbly
and slug flows, so it would not be suitable for annular flows, for
example; moreover, the relationship between the interfacial veloc-
ity calculated using the cross-correlation method and the velocity
of either phase may be unknown or even non-unique under some
flow conditions (Falcone et al., 2002). For example, calculation of
the gas flow rate by integrating the product of void fraction and
gas velocity requires knowledge of the temporal and spatial distri-
bution of these properties. The cross-correlation method cannot
provide a time history of gas velocity, because its output is a sin-
gle-valued estimate of the average interfacial velocity, under the
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assumption that the temporal fluctuations of gas velocity would be
negligible. We have discussed this issue in detail in a separate
manuscript (Shaban and Tavoularis, 2014b), in which we proved
that neglecting the temporal or spatial fluctuations of the gas
velocity would introduce errors in the predictions of gas flow rate,
especially at relatively large gas and liquid flow rates. A main con-
clusion of that work is that the cross-correlation method is capable
of estimating fairly accurate the phase flow rates only within very
narrow ranges of flow conditions.

Some MFMs are based on differential pressure measurement
across obstructions, including Venturi tubes (for example, Meng
et al. (2010)) and orifice plates (for example, Lin (1982) and
Zhang et al. (1992)), along with estimates of mass quality at the
measurement location. Venturi tubes and orifice plates can be cal-
ibrated to measure the mass flow rate of the two-phase mixture
from the pressure drop across the device. Empirical correlations
are typically used to obtain the mass quality of the flow from the
void fraction, measured using a void fraction meter. The mass flow
rate of each phase can then be calculated separately by using the
mixture mass flow rate and the mass quality. It is required, when
using these devices, for the flow to be homogenized upstream of
the measurement device to avoid dependence of the results on
the flow regime and to ensure reproducibility. Another general
limitation of these methods is that they rely on empirical models
and so become specific to a particular flow set-up, in which they
need to be calibrated.

Another type of MFMs is based on the application of machine
learning regression techniques, such as neural networks or support
vector regression, on some features of a measured parameter
(pressure, conductivity and radiation attenuation, among others),
whose fluctuations correspond to fluctuations in the phase compo-
sition of the flow. For example, Beg and Toral (1993) presented a
method based on pattern recognition of features derived from
the time histories of differential and absolute pressure signals
across an orifice plate in horizontal air–water pipe flow with a
homogenizing device. Cai and Toral (1993) expanded on this study
and used first a Kohonen self-organizing map to classify the flows
into different regimes and then neural networks to estimate the
gas and liquid flow rates. Minemura et al. (1998) used a correlative
mapping method to calculate the phase flow rates from stochastic
features derived from the differential pressure signal across a Ven-
turi tube, preceded by an eccentric elbow, which homogenized the
flow. In another study, Meribout et al. (2010) used neural networks
along with features extracted from the signals of five different
types of sensors (including acoustic, impedance and pressure sig-
nals) to estimate the phase flow rates with a 5% uncertainty. Most
recently, Fan and Yan (2013) used neural networks to estimate the
gas and liquid flow rates for measurements in the slug flow regime,
from mechanistic features extracted from the conductance signals
of two probes. MFMs of this type also need to be calibrated before
use, but they may potentially utilize, as an input, any flow property
that varies with phase composition, thus introducing the possibil-
ity of a non-intrusive measurement. When the flow property, that
is used as an input, can be measured by relatively inexpensive
means, such methods can be quite economical.

The present study is aimed at developing an accurate two-phase
flow metering method that would be suitable for simultaneous and
cost-effective flow rate measurements in vertical upward
gas–liquid flows in a large number of pipes. Such a method should,
ideally, be free of complicated or expensive instrumentation and be
non-intrusive. It should operate effectively in all flow regimes,
without prior knowledge of the regime or the need for homogeniz-
ers. Previous experimental studies in facilities with large numbers
of pipes have been performed by either limiting the number of
pipes in which measurements were collected (Kowalski and
Hanna, 1989) or by utilizing a single set of instruments for

successive measurements in all of the pipes (Teclemariam et al.,
2003), which required an excessive amount of time for measure-
ments at each set of flow conditions. Following evaluation of vari-
ous options, we chose the following approach: (a) differential
pressure transducers connected to taps in a straight pipe were used
as sensing devices; (b) Principal Component Analysis and Indepen-
dent Component Analysis were used to extract independent fea-
tures from the differential pressure signals; and (c) neural
networks models were used to correlate these features to the gas
and liquid flow rates. The flow regime was identified from the
same differential pressure signals by the use of the method of elas-
tic maps, which has been developed by Shaban and Tavoularis
(2014a); for brevity, this article will be henceforth referred to as
ST1. The present method of flow regime identification may also
be applied to signals provided by other instruments, such as
impedance void meters (Mi et al., 1998), electrical capacitance
tomographs (Jeanmeure et al., 2002) and conductivity probes
(Julia et al., 2008). In the following sections, the data analysis
and machine-learning techniques that were used in this study will
be briefly introduced, then the proposed method will be outlined
and, finally, some representative results of the present analysis will
be presented and compared to those obtained with the use of
approaches introduced by previous authors.

Background

Terminology

Standard terminology, as established in machine-learning anal-
ysis, will be used in the following sections; some of these terms
will be defined here for clarity. A dataset is a collection of data
points, called examples, each of which can be represented as a vec-
tor of several values, called features. The number of features is
called the dimension of the dataset. For instance, in the present
study, the input dataset comprises differential pressure measure-
ments, each of which is an input example composed of 12,000
input features, which are discrete values recorded at a rate of
200 samples/s over a time interval of 60 s; therefore, this dataset
has a dimension equal to 12,000. Machine learning algorithms
can be used for classification, which is a process providing, as out-
put, a class selected among a set of classes. They can also be used
for regression, which is a process providing, as output, a real num-
ber. An algorithm is first used to train a model on a certain portion
of the entire dataset, called the training set. The objective of the
training process is to calculate the unknown coefficients/weights
in the model. The process of determining the optimal values of
the user-specified parameters in the models is called validation.
Finally, the trained algorithm is tested against a test set, which
was not used for the calculation of the model coefficients or the
selection of the model parameters. A trained algorithm that per-
forms equally well on both the training and the test datasets is said
to have good generalization performance. In some cases, a trained
algorithm performs very well with the training dataset but very
poorly for test examples, even if they are within the calibration
(training) range, a situation referred to as overfitting.

Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a signal processing
method for representing a measured signal as a linear summation
of several independent components (Hyvarinën and Oja, 2000).
Besides its use to decompose a signal into additive components,
ICA can also be used for feature extraction and dimensionality
reduction. In this study, ICA will be used to reduce the dimension
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