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a b s t r a c t

This paper presents a computational methodology for the two and three dimensional numerical simula-
tion of dense and dilute dispersed particles in multiphase gas–solid and liquid–solid flows. The model
equations are based on the two fluids approximation, with closure terms for the fluid–solid drag interac-
tion forces and the additional dense collisional terms arising from particle–particle interactions under the
kinetic theory. These equations are discretized and solved using a novel unstructured mesh control vol-
ume-finite element framework, with an anisotropic mesh adaptivity capability. The methodology is
applied to study the transport of sand particles of various sizes in fluidized beds, as well as particle seg-
regation in a polydisperse system containing three solid particle sizes.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

The need to understand and predict the behaviour of dispersed
solid particles within a continuum phase has a long history, and
appears in a number of industrial applications, from the pneumatic
transport of coal in power plants (Geldart and Ling, 1990), to the
application of catalysts in chemical reactors (Douek et al., 1995),
to sand deposition (Doron et al., 1997) and abrasion in oil and
gas pipelines. Direct numerical simulation of such systems is diffi-
cult when the number of dispersed particles may be in the mil-
lions, and when particles can differ in size and shape.

Numerical models for such systems may be divided into catego-
ries depending on the frame of representation applied to the con-
tinuum fluid and to the particles themselves. These can range from
the fully-Lagrangian methods of techniques such as smoothed par-
ticle hydrodynamics (Xiong et al., 2011), to Eulerian–Lagrangian
methods such as the discrete element method in monodispersed
and polydispersed systems (Sakai et al., 2010; Sakai et al., 2012;
Sakai et al., 2014; Dosta et al., 2012; Feng and Yu, 2010), to the

Eulerian–Eulerian approach applied in this paper. Here we follow
the philosophy of the two-fluid model (Enwald et al., 1996), effec-
tively treating the lengthscale-filtered solid concentration as a sec-
ond, miscible, fluid phase (Hewitt and Vassilicos, 2005). Closures
are applied for the fluid–solid drag forces and for the collision
energy exchange occurring within solid–solid particle interactions,
with the form of the latter usually, as here, derived from an appli-
cation of a theory analogous to the kinetic theory of gases
(Chapman and Cowling, 1970).

Such methods have previously been applied with great success
to modelling of flows in risers (Neri and Gidaspow, 2000) and flu-
idized beds (Taghipour et al., 2005). However, it has been noted
that the ability to capture correctly the behaviour of transient phe-
nomena is strongly dependent on the numerical resolution being
adequate in the vicinity of the feature of interest (Wang et al.,
2010). This suggests the feasibility of applying mesh adaptivity
to generate accurate solutions to such systems efficiently.

Mesh adaptivity and the related field of adaptive mesh refine-
ment are increasingly popular methods in computational fluid
dynamics. Methods range from a global remeshing of the entire
domain (Peraire and Morgan, 1997), to various local or nested
refinement algorithms, modifying the mesh structure only in the
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regions of interest. Criteria for the definition of a good mesh can
range from a priori or a posteriori error estimates (Verfürth, 1994)
to phenomenological constraints based on the expected appear-
ance of important phenomena (Weller, 2008).

The structure of this paper is as follows: in the following section
we describe the granular flow equations and closures being used to
model the multiphase physics, and the control volume finite ele-
ment method being applied to discretize them. We then go on to
describe the algorithm used to control mesh adaptivity. In the next
section we present the results of an application of the model and
introduce test cases for flows in monodispersed fluidized beds
(on both fixed and adaptive meshes) and polydispersed fluidized
beds (on fixed meshes only). The mono dispersed simulations are
compared with experimental data. Finally we draw a brief
conclusion.

Model governing equations and discretization

We begin by listing the governing equations applied to simulate
the fluidized bed systems. Although similar equation sets have
been used previously by the authors to simulate monodisperse flu-
idized bed systems (Pain et al., 2002; Gomes et al., 2007) we here
present additional terms which allow for multiple solid particle
size distribution classes. The flow is modelled using an Eulerian–
Eulerian incompressible multiphase approach. Separate continuity
and momentum balance equations are solved for each phase,
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Here the index g denotes filtered properties ascribed to the gas
phase, while the index i denotes a quantity ascribed to a solid phase
(a single phase for monodisperse system modelling, many phases in
the polydisperse case). The other variables in the continuity equa-
tions are (constant) material densities, q, phase volume fraction, a
and phase velocity, u. The further quantities introduced in the
momentum equations are the gas phase pressure, pg , stress tensor,
s and body forces, F. Conservation of total volume in the system
implies a further constraint,
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For the gas phase, the stress tensor takes the usual form,
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for a prescribed gas viscosity lg . In contrast, the solid stress tensor
is more complex, containing closure terms representing the addi-
tional forces arising from the interaction (in the dense limit) of
the individual solid particles assigned to a particular phase:
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Following Gidaspow (1994), the additional solid pressure term, pi

appearing on the diagonal is assumed to take a form arising from
an application of the kinetic theory to finite diameter particles.
Assuming constant material properties we obtain
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where H is an additional modelled quantity, commonly termed the
granular temperature, parameterizing the distribution of the ener-
gies of the individual solid particles around their local spatially fil-
tered value. Although in general the granular temperature of
different phases may differ and must be formally related (see for
example van Sint Annaland et al., 2009, for such a model), we
neglect such terms here under the assumption that the particle con-
centrations remain dense enough that variations between phases
equilibrate fast. The parameter e is a restitution coefficient, describ-
ing the energy loss in particle–particle collisions and the function
g0, termed the radial distribution function, parameterizes the likeli-
hood of particle–particle interaction at a given concentration,
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Here amax is a parameter limiting the maximum allowable particle
packing fraction. Note that in this formulation we make no correc-
tion in the polydisperse limit, although it will be recognized that the
maximum packing fraction of a binary mixture of two disparate
particle sizes will be in excess of this single particle limit (Zhu
et al., 2008).

The solid viscous compressional and shear viscosities are simi-
larly parameterized as
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where di is the typical particle diameter for the ith phase i,e the par-
ticles are effectively assumed to be perfectly spherical. A summa-
tion is applied here under the assumption that the pseudo-viscous
energy lost through a collision is not a function of the particle clas-
ses colliding. Finally, the body force terms are
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where we choose the popular Wen and Yu (1966) model for gas-
particle drag,
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where the coefficient is prescribed as
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using a particle Reynolds number defined as
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Experimentally, the Wen and Yu model has proven a good phenom-
enological fit for the drag exerted in the monodisperse limit for
dilute models (Delebarre, 2004). The more recent development of
closures based on ensembles of high resolution lattice Boltzmann
simulations (Benyahia et al., 2006; Yin and Sundaresan, 2009;
Tenneti et al., 2011) offer possibilities for investigation in the future,
particularly for polydispersed fluid–solid (Cello et al., 2010) and
fluid–fluid flows.
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