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a b s t r a c t

Nowadays, two families of stochastic models are mainly used to predict the dispersion of inertial particles
in inhomogeneous turbulent flows. This first one is named ‘‘normalized model’’ and the second one
‘‘Generalized Langevin Model (GLM)’’. Nevertheless, the main differences between the normalized and
GLM models have not been thoroughly investigated. Is there a model which is more suitable to predict
the particle dispersion in inhomogeneous turbulence? We propose in the present study to clarify this
point by computing a particle-laden turbulent channel flow using a GLM-type model, and also a normal-
ized-type model. Particle statistics (such as concentration, mean and rms particle velocity, fluid-particle
velocity covariances) will be provided and compared to Direct Numerical Simulation (DNS) data in order
to assess the performance of both dispersion models. It will be shown that the normalized dispersion
model studied can predict correctly the effect of particle inertia on some dispersion statistics, but not
on all. For instance, it was found that the prediction of the particle kinetic shear stress and some compo-
nents of the fluid-particle covariance is not physically acceptable.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In order to describe the transport of inertial particles in a turbu-
lent flow, the point-force approximation is usually used. The parti-
cle equation of motion can be then solved if the instantaneous fluid
velocity at particle location (fluid velocity seen by particles) is
known. Several methods can be used to properly determine this
velocity. The first possibility is to use Direct Numerical Simulation
(DNS). It gives the most accurate estimation of the fluid velocity
seen by particles. Nevertheless, it necessitates high computational
resources. When the computational cost of this latter technique is
too high, macroscopic numerical simulation such as Reynolds-
Averaged Navier–Stokes (RANS) can be considered. To describe
the motion of solid particles in a turbulent flow using a RANS
method, the random nature of the velocity along inertial particle
trajectories has to be reconstructed, for instance, using Langevin-
type models since only mean quantities (such as the mean velocity
and some of the mean turbulent characteristics) of the carrier
phase are given by the RANS method.

According to the literature, two families of Langevin-type mod-
els emerge. The first one is generally named ‘‘normalized models’’.
They are derived from the pioneer work of Wilson et al. (1981) in
which a model that avoids the non-physical accumulation of tracer
particles in inhomogeneous turbulent flows (spurious drift effect)
is proposed. In order to get rid of the spurious drift effect, an ad
hoc term was added to the Langevin equation. The consistency of
their stochastic model with the Navier–Stokes equations was not
considered while it was the starting point of the derivation of the
Generalized Langevin Model (GLM) proposed by Pope (1983).

The normalized and GLM models, developed for predicting the
trajectory of fluid particles, were later extended to determine the
fluid velocity seen by inertial particles by Sawford and Guest
(1991) and Simonin et al. (1993), respectively. Nowadays, these
two families of models are still used to model the motion of inertial
particles in inhomogeneous turbulent flows. Nevertheless, the
main differences between the normalized and GLM models have
not been thoroughly investigated. Is there a model which is more
suitable to predict the particle dispersion in inhomogeneous turbu-
lence from an engineering point of view ?

We propose in the present study to clarify this point by comput-
ing a particle-laden turbulent channel flow using a GLM-type
model (Arcen and Tanière, 2009) and a specific form of a normal-
ized-type model (Dehbi, 2010), the parameters of these models
being determined from DNS data. Particle statistics (such as
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concentration, mean and rms particle velocity, and fluid-particle
velocity covariances) are provided and compared to DNS data in
order to assess the performance of both models.

The present paper is organized as follows: the stochastic models
are briefly described; the configuration and numerical simulation
of the gas–solid turbulent flow are presented in the next section;
then we analyze the results given by the normalized stochastic
model through a comparison with data previously obtained by
DNS and with a GLM stochastic model (Arcen and Tanière, 2009).
Finally, the last section is devoted to concluding remarks.

2. Brief description of the dispersion stochastic models

From a literature review about stochastic dispersion models for
non-homogeneous turbulent flows, it can be noticed that the exist-
ing models are extension of models previously derived to predict
the motion of fluid particles in a turbulent flow. It should also be
noted that most of these stochastic models for the fluid particle
velocity were originally developed for homogeneous isotropic tur-
bulence and then extended to inhomogeneous turbulent flows.
Considering homogeneous isotropic turbulence, the time incre-
ment of the instantaneous fluid velocity, dui, can be described by
the following stochastic process:

dui ¼ �
ui
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dt þ
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2

D E
TL

0
@

1
A

1
2

dWi; ð1Þ

where the input parameters for the above Langevin model are the
variance of the velocity, hu0i

2iðh�i denotes averaged quantities), and
the Lagrangian integral timescale, noted TL. WiðtÞ is a set of inde-
pendent Wiener processes which have increments normally distrib-
uted with zero mean and variance dt.

Since the 1980s, it has been shown that the direct use of Eq. (1)
to predict the diffusion of fluid particles in non-homogenous tur-
bulent flows can lead to non-physical effects. Such a model does
not give realistic results since particle concentration tends to in-
crease in regions with low velocity variance (spurious drift effect).
The works conducted by Wilson et al. (1981); Legg and Raupach
(1982) or by Pope (1983) give some solution that avoids the non-
physical fluid particle accumulation. A corrective term can be di-
rectly introduced in the stochastic equation in order to avoid the
spurious drift effect. This is the way chosen by Wilson et al.
(1981) and Legg and Raupach (1982). For instance, reduced to
the wall-normal direction (x2) in a boundary layer (where the
mean wall-normal velocity is supposed to be equal to zero), the
normalized formulation proposed by Wilson et al. (1981) is:
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2 ¼ u02
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. The last term of this equation is the correction
term which avoids the spurious drift effect. It corresponds to a
mean force due to the action of the mean pressure gradient on fluid
particles.

Following a different path, Pope (1983) derived a functional
form of the Langevin-type model for the instantaneous fluid veloc-
ity increment which is consistent with the averaged Navier–Stokes
equations. It takes the following form:

dui ¼ � 1
qf

@hpi
@xi
þ mr2hUii

" #
dt þ Gij½uj � huji�dt þ BijdWj; ð3Þ

where Gij has an inverse time dimension, qf is the fluid density, m is
the fluid kinematic viscosity. It should be noted that the pressure gra-
dient appears naturally and correctly in opposite to the previous nor-
malized model (Eq. (2)). This group of models is named Generalized

Langevin Models, noted GLM, where the drift and diffusion parame-
ters, Gij and Bij respectively, have to be specified. The increment of the
fluctuating fluid velocity ðdu0i ¼ dui � dhuiiÞ can be also derived:

du0i ¼
@hu0iu0ji
@xj

� u0j
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dt þ Giju0jdt þ BijdWj: ð4Þ

Pope (1987) provides an important algebraic relation between the
drift and diffusion terms which ensures the Eulerian consistency
with the Reynolds stress transport equation. From Eq. (4), it can be
shown that the GLM is consistent to second order and for any turbu-
lent flows, if the drift and diffusion parameters satisfy the relation:
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Based on these ideas about the modeling of fluid particle velocity,
stochastic models were later developed to predict the fluid velocity
at solid particle location in two-phase turbulent flow modeling. To
determine the trajectory of a solid particle using the point force
approximation, the particle equations of motion have to be solved.
Considering that the drag force is only of importance, these equa-
tions take the following form:

dxp;i

dt
¼ vp;i;

dvp;i

dt
¼ ð

~ui � vp;iÞ
sp

;

8>><
>>: ð6Þ

where xp;i and vp;i are the particle position and velocity, sp is the
particle relaxation time which is expressed in terms of the drag
coefficient and of the magnitude of the relative velocity, and
~ui ¼ uiðxp; tÞ is the fluid velocity at the particle location. Normalized
or GLM models were extended to model this velocity (i.e. ~ui). We fo-
cus here specially on the GLM-type model proposed by Arcen and
Tanière (2009) which is known to provide an accurate prediction
of particle dispersion in a non-homogeneous turbulent flow. It
should be noted that this GLM-type model is also compatible with
the transport equation of the drift velocity (mean fluctuating fluid
velocity at particle location), noted h~u0ii ¼ h~ui � huiii, in the limits
of low and high particle inertia. The form of this model is:
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Its fluctuating counterpart is given by:

d~u0i ¼ G�ij � @huii=@xj

h i
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The drift and diffusion parameters, G�ij and B�ij, are different from Gij

and Bij. Nevertheless they have to become identical for sp ! 0. The
values of the drift and diffusion parameters are linked via Eq. (5).

Concerning the normalized model, we examined the model re-
cently used by Dehbi (2010) to predict the motion of particles in a
turbulent channel flow. This stochastic model was derived from
the work of Hanratty and its co-workers (e.g. Iliopoulos et al.,
2003), and from the proposal of a drift correction term which takes
into account the particle inertia (Bocksell and Loth, 2001; Bocksell
and Loth, 2006). This model, written for the fluid fluctuating veloc-
ity at solid particle location, is:
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