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A B S T R A C T

This paper presents criteria for accurately measuring the thermal diffusivity of a solid material using the
Ångström method. In this technique, a periodic heat load is supplied at one end of the sample and temperatures
are measured at different locations along the sample. The thermal diffusivity is estimated from the measured
amplitude and phase of the temperature oscillations at various locations along the sample. Criteria are presented
for important measurement parameters namely as periodic heat load power, waveform and frequency. Since
more than two sensors are used, the accuracy is further improved since the linearity of the phase and amplitude
data can be verified. We experimentally establish that a sinusoidal input heat load with a frequency as defined by
the criteria established in this paper results in improved measurement accuracy. Based on these criteria, the
experiment was performed with a range of materials spanning low to high thermal diffusivities namely Teflon,
G10, Titanium Alloy (Ti6Al4V), Stainless steel (SS316) and Aluminium Alloy (Al6061-T6). The results indicate
that the measured thermal diffusivity values deviate from the literature data at room temperature by less than
2.1%.

1. Introduction

The Ångström or thermal wave technique is often used to measure
the thermal diffusivity of solid materials [1–3]. This paper presents, and
experimentally validates, criteria for accurate measurements using the
Ångström method over a wide range of thermal diffusivity values.

The thermal diffusivity (α) of a material is a measure of how fast a
thermal disturbance propagates through it and is related to the density,
thermal conductivity and specific heat by the relation α= κ/(ρCp). The
thermal diffusivity of a specimen is normally directly measured by
utilizing transient methods that utilize the measured transient tempera-
ture response to a time varying heat source. As stated in Tye [2],
transient methods are classified into transitory and periodic tempera-
ture methods. In transitory methods the thermal diffusivity is estimated
from the sample temperature response to a sudden change in input heat.
A well-known example is the Flash method [4]. In the periodic tem-
perature method, thermal diffusivity is estimated from the sample re-
sponse to a periodic (time varying) heat input. Examples include the 3ω-
method [5] and the Ångström method [3].

The Ångström method was first demonstrated in 1861 [3]. It is used
to measure the thermal diffusivity of average to good thermally con-
ductive materials. In the original experimental set-up, a rod is heated at
one end, by periodically switching the heat load on and off, and its

temperature is measured at two locations along the length. Thermal
diffusivity of the rod is then estimated with the formula
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Note that t is time that the thermal wave takes to transverse the
distance L between two temperature sensors located along the
sample.θ1 and θ2 are the amplitudes of the temperature wave at the two
sensor locations. This method is relatively easy to setup and gives ac-
curate results even with a convective environment. However, to the
knowledge of the authors, there are few studies for materials with
thermal diffusivity below 1×10−6 m2/s [6–8]. Additionally, there are
no clear criteria in the open literature for determining the voltage
waveform, frequency and heater power.

This paper discusses a number of approaches to improve the accu-
racy and range of the Ångström method so as to achieve accurate
measurements for materials with a broader range of thermally con-
ductivities. In this approach instead of two sensors (as stated in original
experimental set-up), multiple sensors are used along the sample. This
methodology not only improves the accuracy of the result but also gives
better representation of the thermal wave behaviour propagating along
the sample. The thermal diffusivity is estimated from the phase lag and
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amplitude decay of the temperature response at various locations along
the specimen. Frequency, waveform and power criteria for the thermal
diffusivity measurement are also presented.

2. Theory

In the Ångström technique, a periodic heat load is applied at one
end of a solid rod, with the entire length of the rod exposed to the
surroundings. A temperature wave propagates along the rod, in which
the phase gets shifted and the amplitude of the oscillations decreases.
The temperature of this wave is measured as a function of time at
various locations along the axis of the rod.

In the current analysis, it is assumed that the transverse temperature
gradients are negligible (note that Bi < 0.1 with respect to the spe-
cimen radius for all samples considered in this study [9]) in a long thin
rod shaped specimen (i.e. fin approximation [1]), hence the transient
one-dimensional equation for heat conduction in the specimen is given
by
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where, p and A are the cross section perimeter (p=2πr) and area of the
cylindrical rod sample, respectively. Since one end of the specimen is
heated periodically with an angular frequency of ω (ω=2πf), the
temperature amplitude at every location along the specimen will vary
with this frequency and hence has the form

− =T x t T x V x e( , ) ( ) ( )m
iωt (2)

V(x) is a complex position dependent quantity that describes the
amplitude and phase of the resultant thermal wave. Tm(x) is the mean
temperature of the sample at a given location “x” and is obtained by
solving the standard steady state fin equation [1,9]:
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where h = hcov+ hrad. where hcov is the convective heat transfer coef-
ficient and = ∞h εσT4rad

3 is the radiation heat loss coefficient. Note that
H= hp/ρCpA, ε is the emittance of the sample, σ is the Stefan-
Boltzmann constant and T∞ is the temperature of the surroundings.

Substituting Equation (2) in Equation (1)

+ = + − +∞
d T x

dx
e d V x

dx α
iω e V x m T T V x e( ) ( ) 1 ( ) ( ) [ ( ) ]m iωt iωt

m
iωt

2

2

2

2
2

(5)

Substituting Equation (3) in Equation (5) and rearranging
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Thus Equation (6) has the form
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The general solution of Equation (8) is

= + −V x C e C e( ) βx βx
1 2 (9)

In Equation (9), C1 is zero for a physically meaningful solution since
the temperature cannot increase with distance in a fin. Substituting
Equation (9) in Equation (2) the transient temperature amplitude is

− = −T x t T x C e e( , ) ( ) ( )m
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Since β is a complex number it can be represented as

= +β z iz1 2

z1 and z2 are respectively the real and imaginary components of β
and i=(−1)1/2. Substituting β in the above equation
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Equation (10) represents the transient temperature wave (TW) in
the sample along the x-axis. Physically, 1/z1 is the length scale of the
decay in the amplitude and z2 is the wave number. Note that,
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Equating the real and imaginary parts respectively:
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Solving Equation (12) for z1 and z2 yields
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Nomenclature

Latin symbols

A Cross-sectional area of the sample [m2]
An Amplitude of the nth mode in the temperature signal
Cp Specific heat [J/Kg K]
f Frequency of periodic heating [Hz]
h Heat transfer coefficient [W/m2K]
H hp/ρCpA
p perimeter of the sample (2πr) [m]
Q Heat Supply [Watts]
r Radius of the sample[m]
R Resistance [Ω]
Tm Mean temperature of the sample [K]
T∞ Surrounding temperature [K]
T Time [s]

Greek symbols

ω Angular Frequency of the wave signal
Φn Phase of the nth mode in the temperature signal
α Thermal diffusivity [m2/s]
ε Emittance of the sample
σ Stefan-Boltzmann constant [W/m2K4]
ρ Density [kg/m3]
κ Thermal Conductivity [W/m K]
θ Amplitudes of the temperature wave[K]

Abbreviations

TW Transient Temperature Wave
FFT Fast Fourier Transform
Bi Biot Number (h r/κ)
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