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A B S T R A C T

An extended Kalman smoother (EKS) introducing the concept of future measurement information is developed to
handle nonlinear inverse heat conduction problems. In the present study, the formulation of the EKS algorithm is
generalized in the case of a two-dimensional problem in order to reconstruct a non-homogeneous heating
condition on the front surface of a cylindrical sample. This leads to apply the new method in a multiple sensor
case for the simultaneous reconstruction of several parameters at each time. The analyzed inverse problem is
nonlinear due to the variability of the thermophysical properties with temperature and to the presence of ra-
diation boundary conditions. Inverse estimation is successfully performed where temporal and spatial variations
of the front surface heat flux are recovered based on non intrusive transient temperature measurements made on
the back surface. Numerical experiments show that the use of an optimal number of future data greatly improves
the solution of the EKS compared to the extended Kalman filter (EKF) estimates, where a noticeable reduction of
time lag and sensitivity to measurement errors is observed. Inversion results show that the optimal number of
future data, chosen on the basis of a minimum measure of the heat flux bias, depends on the modeling error, the
measurement time step, the distance between the sensors and the front heated surface and the measurement
noise level. The proposed algorithm is robust in recovering different heat flux profiles and provides for all the
examined patterns symmetric and stable solutions that superposes well with the exact functions. The EKS for-
mulation based on an augmented state vector allows to efficiently recover the front surface temperature si-
multaneously with the heat flux.

1. Introduction

The solution of an inverse heat conduction problem (IHCP) is de-
fined as the reconstruction of unknown heat flux or temperature on the
surface of a heat conducting body based on temperature measurements
taken at interior or backside points [1]. This situation is encountered
when a direct measurement of a surface condition is not possible, either
because the surface is unsuitable for attaching a sensor (aggressive
environment, rubbing, etc.), or because the presence of the sensor may
impair the accuracy of the direct measurement on the surface.

The resolution of IHCPs concerns several applications including
heating in internal combustion chambers [2] or in internal boilers [3],
laser heating [4,5] and space vehicles heating at the reentry of the
earth's atmosphere [6].

IHCPs are mathematically ill-posed, mainly because of their high
sensitivity to random errors of measurements, which can result in
considerable perturbations in the solution. Indeed, the nature of

transient heat conduction in a solid is such that a disturbance on the
surface is damped and lagged toward the interior. Inversely, when using
interior point measurements as inputs for the inverse problem, the least
measurement error will be amplified at the surface, causing large os-
cillations and instability in the estimated surface condition.

Special techniques are crucial to ensure a stable and correct esti-
mation of the inverse solution. One of the most efficient techniques is
the use of information at times ulterior to the estimation instant called
future time measurements. This technique has been firstly developed by
Beck [7] in a least-square sequential procedure denoted by the function
specification method which greatly enhanced the stability of the inverse
problem. Improved versions of the Beck's method have been proposed
later [8–11]. Furthermore, Hensel and Hills [12] efficiently introduced
the concept of future time measurements in the analysis of a linear
IHCP based on a numerical procedure without iterations. In turn,
Raynaud and Bransier [13] developed a space marching method based
on future time data. Recently, their method has been combined with the
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function specification method and applied in an on-line procedure for
the solution of a nonlinear IHCP [14].

The Kalman filter (KF) is a recursive stochastic algorithm whose
performance has been widely demonstrated from the state estimation
for different types of linear systems. In its estimation procedure, the KF
efficiently extracts information from observations of the system outputs
and is powerful in handling the random character of measurement noise
when it is Gaussian and white. The original version of the KF applies to
linear dynamic systems where the state equation is linear and the
measurements are also related to the state by a linear equation [15].
Then, an extension of the basic KF has been introduced [16] in order to
deal with nonlinear systems widely encountered in practice. The re-
sulting filter is referred to as the extended Kalman filter (EKF).

In the literature, the majority of papers dealing with the solution of
inverse heat conduction problems for the recovering of a heat flux, a
temperature or a heat source history are limited to the application of
the linear KF coupled with the recursive-least square algorithm (RLSA)
[17–21]. The same technique (KF-RLSE) has been also applied for the
solution of inverse radiation-conduction problems [22,23]. Little work
has been done using the EKF. Wang et al. [24] and Chen et al. [25]
combined the EKF with the RLSA to recover a transient heat source. The
same combination (EKF-RLSA) has been adopted by Jang and Cheng
[26] for the estimation of a time-varying heat source generated by a
semiconductor electronic device. Only Daouas and Radhouani [27]
proposed an approach of the EKF allowing a simultaneous correction of
the process state (temperatures) and the surface condition history
(transient heat flux) by adopting an augmented state vector, where both
the process state and the unknown parameters are involved. This ap-
proach has the advantage of reducing the two-stage procedure of the
EKF-RLSA algorithm to a one part calculation based on the sequential
EKF equations. Moreover, it allows avoiding some additional in-
itializations needed in the RLSA, on the one hand, and the crucial

tuning of the adaptive weighing factor which controls the tracking of
the surface condition transient variation in the RLSA, on the other hand.

The augmented state concept has been successfully applied for the
solution of a nonlinear IHCP with a short computation time [27]. With
an appropriate adjustment of the EKF tunable parameters, the stability
of the estimation procedure has been ensured in spite of the presence of
real noisy data. However, the recovered surface heat flux showed a
time-lag, compared to the exact solution, which depends notably on the
measurement location. Based on these results, the same authors at-
tempted later to introduce the concept of future measurement in-
formation in the EKF algorithm [28]. They proposed a new formulation
of a Kalman smoother technique, extended to a nonlinear model, and
applied it to the solution of a transient one-dimensional IHCP including
the reconstruction of time-varying heat flux and temperature at the
surface of a cylindrical heat conducting solid. This extended Kalman
smoother (EKS) greatly reduced the time-lag of the solution and also
improved its stability. The EKS technique has been also tested in the
presence of a real set of experimental noisy temperature measurements
[29] and provided symmetrical and stable estimations of the histories of
heat flux and temperature at the surface of a heat conducting cylinder.
Compared to the reference function specification method proposed by
Beck [7], the EKS scheme has some advantages related to its statistical
approach. This allows the EKS algorithm to describe the stochastic
structure of experimental measurements and to handle the random
character of the measurement noise. The formulation of the EKS, takes
into account the incertitudes in the model and in the initial state
through their associated covariance matrices. Based on the concept of
the augmented state vector, the EKS is able to smooth errors affecting
both the initial temperature distribution and the surface condition.

In a similar context, Wan et al. [30] developed an unscented Kalman
smoother combining the unscented Kalman filter and the Rauch Tung
Striebel (RTS) smoother in order to solve a one-dimensional nonlinear

Nomenclature

B bias
C volumetric heat capacity (W/m3.K)
e cylinder thickness (m)
EKF extended Kalman filter
EKS extended Kalman smoother
h convection heat transfer coefficient (W/m2.K)
H observation matrix
I identity matrix
IHCP inverse heat conduction problem
K filter gain
N total number of nodes
nf number of future measurements
nr number of nodes in the radial direction
nt total number of time steps
nz number of nodes in the axial direction
p probability
P covariance matrix of estimation error
Q covariance matrix of model error
q0 maximum value of surface heat flux (W/m2)
qs surface heat flux (W/m2)
r radial coordinate (m), noise of model error (W/m2)
R cylinder radius (m)
R covariance matrix of measurement error
t time (s)
T temperature (K)
Ta ambient temperature (K)
x state vector
X augmented state vector
x* reference state vector

y measurement
y vector of measurements
z axial coordinate (m)
zm axial location of the sensors (m)

Greek symbols

α thermal diffusivity (m2/s)
Δr space step in the radial direction (m)
Δt inverse time step (s)
Δtd direct time step (s)
Δz space step in the axial direction (m)
ε emissivity
λ thermal conductivity (W/m.K)
σ Stefan-Boltzmann constant (W/m2.K4)
σm standard deviation of measurement noise (K)
σq standard deviation of modeling error (W/m2)

Subscripts

i refers to axial position
j refers to radial position
k refers to time
k/n refers to (n-k) future times
m refers to measurement

Superscripts

ˆ estimation value
– prediction value
t transposition operator
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