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A B S T R A C T

The purpose of this work is to carry out a meshfree implementation for the numerical simulation of two-di-
mensional transient incompressible flows coupled with heat transfer where phase change is present. The Finite
Pointset Method is applied in order to solve the involved partial differential equations where the corresponding
classical or strong formulation is directly used instead of the corresponding weak form as needed for some other
meshfree approaches. The incorporation of the boundary conditions is done in a direct and simple manner. The
simplicity and efficiency of this numerical method are demonstrated on several two-dimensional benchmark
problems where solidification and melting processes occurs.

1. Introduction

Fluid flow coupled with heat transfer where phase change takes
place arises in many engineering applications. Mesh-based numerical
methods for partial differential equations have been used for solving
such problems. However, it is very difficult to model phase transitions
and discontinuities with mesh-based techniques since the interface lo-
cation does not coincide with the original nodal lines during the pro-
blem evolution. It is very difficult for this kind of methods to simulate
material fragmentation since most of them are based on continuum
mechanics in which the elements cannot be broken. Therefore, a false
representation of the fragments paths could be produced. The re-
meshing approaches has been proposed in mesh-based methods to
overcome the problems above and to simulate problems where phase
changes occurs, which are both computational and economically ex-
pensive. Recently meshfree or meshless methods have been developed
as an alternative to overcome part of the difficulties arising when mesh-
based methods are used and these are classified in two main groups
according to the type of equations on which they are based [1,2].

Some meshfree methods are based on the weak-form of the corre-
sponding partial differential equations and they are characterized by
being stable and accurate, therefore they naturally satisfy the imposed
Neumann boundary conditions. These methods are computationally
expensive since the numerical integration is mandatory. Furthermore,
these methods require local or global meshes for integrating the derived
matrix system from the weak-form on the problem domain which
makes them not completely meshfree. The most common examples of

such methods include the Element Free Galerkin Method (EFG), the
Reproducing Kernel Particle Method (RKPM), the Diffuse Element
Method (DEM), the Meshless Local Petrov-Galerkin Method (MLPG),
Meshless Boundary Element Method (MBEM), Meshless Finite Volume
Particle Method (MFVM) and the Natural Element Method (NEM).
There are other meshfree methods which are based on the strong-form
of the corresponding partial differential equations and they are char-
acterized by being truly meshfree since they do not require any kind of
meshing during the solving process, moreover they are easy to imple-
ment and computationally efficient. Nonetheless, many of them are
unstable and less precise than weak-form methods when Neumann
boundary conditions are involved. The most common examples of these
kind of methods include the Smoothed Particle Hydrodynamics (SPH),
Finite Pointset Method (FPM), Finite Point Method and the Radial Basis
Function collocation Method (RBFCM) [1–8].

Different meshfree methods have been applied in order to numeri-
cally solve for fluid flow coupled with heat transfer including phase
change, Vertnik and collegues develop the local radial basis function
collocation method to solve non-linear convective-diffusive transport
phenomena problems with non-linear material properties with phase
change and solve a billet casting problem with simultaneous material
and interphase moving boundaries by an upgraded version of the
LRBFCM meshless method [9,10], Zhang et al. applied the classical fi-
nite point method for solidification modelling in continuous casting
[11], Kosec studied meshfree local radial basis function collocation
method for coupled heat transfer and fluid flow problems, Fang et al.
used an improved SPH model for droplet spreading and solidification
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simulation [12], Yang and He solved heat transfer with phase change
using the element-free Galerkin method in combination with a
smoothed effective heat capacity model [13], Thakur et al. used the
meshless local Petrov-Galerkin method to solve phase change problems
[14], Singh and Bhargava used an hybrid FEM/EFGM technique for the
numerical simulation of a phase transition problem with natural con-
vection [15], Li et al. applied the Lattice Boltzmann method for melting
problems [16], Farrokhpanah et al. proposed a new SPH fomulation for
modelling transient heat conduction with phase change [17], Dehghan
and Najafi studied some high order mesh-based and meshless methods
for non-classical one-dimensional two-phase Stefan problem [18], the
extended finite element method (XFEM) has been applied by Stapór for
two dimensional simulation of solidification processes in materials with
thermo-dependent properties [19], Karagiannakis et al. used the
meshless local Petrov-Galerkin method for transient thermal conduc-
tion with spatiotemporally variable conductivity [20], the Element-free
Galerkin formulation has been applied to transient heat transfer pro-
blems of direct chill casting processes in Ref. [21].

The Finite Pointset Method (FPM) is a Lagrangian truly meshless
approach developed by Kuhnert in Ref. [22] at the Fraunhofer-Institut
für Techno-und Wirtschaftsmathematik, in Kaiserslautern, Germany.
FPM has shown to be far superior to traditional mesh-based methods
and some other meshfree method for solving Partial Differential
Equations governing complicated physical phenomena since it can
overcome some of the problems in SPH formulation and in other strong-
form meshfree methods, especially those related to the treatment of the
boundary conditions [23–30]. The main motivation in this work is that
in FPM nodes can be added or removed as needed since it uses a set of
finite nodes scattered within a problem domain as well as on its
boundaries which do not carry mass, this provides stability advantage

to the method as well as a wider range of boundary conditions which
are essential for phase change problems. Moreover and to authors's
knowledge, the use of FPM for solving fluid flow coupled with heat
transfer considering phase change has not been reported in the scien-
tific literature, therefore the application of FPM in this context is pro-
posed in this work.

The structure of the paper is as follows: section 2 introduces the
governing equations, section 3 shortly describes the numerical scheme
for solving the system of PDEs, section 4 presents the main ideas behind
FPM followed by its discretization presented in section 5. The numerical
results are reported in section 6 and finally some conclusions are given
in last section.

2. Governing equations

The governing equations are the incompressible Navier-Stokes
equations in a laminar regime coupled with the convective heat transfer
equation. In this work the molten material will be considered to behave
as Newtonian fluid. Thus, the governing equations read:
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Suitable boundary conditions for flow dynamics should be carefully
defined, therefore no-slip conditions for solid walls are considered, this
imply all velocity components, should be prescribed. The mushy zone
viscosity μm is a function of temperature and it is defined as follows:

Nomenclature

J Functional ⋅[ ]
M Auxiliary matrix ⋅[ ]
P Differences matrix ⋅[ ]
Pxy Differences matrix ⋅[ ]
Q Auxiliary matrix ⋅[ ]
T Fluid temperature °[ C]
Tc Cold/reference temperature °[ C]
Th Hot temperature °[ C]
Tl Liquid temperature °[ C]
Tm Melting temperature °[ C]
Ts Solid temperature °[ C]
W Weight matrix ⋅[ ]
b x( )k Coefficients in Taylor series ⋅[ ]
b Unknowns vector ⋅[ ] °− −[J kg C ]1 1

c Volumetric heat capacity
cl Specific heat capacity for liquid region °− −[J kg C ]1 1

cs Specific heat capacity for solid region °− −[J kg C ]1 1

e Truncation error vector ⋅[ ]
f Arbitrary function value ⋅[ ]
f͠ Approximated function value ⋅[ ]
f Function value vector ⋅[ ]
fb Distributed body force −[m s ]2

g Gravitational acceleration vector −[m s ]2

h Smoothing length in w [m]
hi k, Spatial differences ⋅[ ]
hf Latent heat of fusion −[Jkg ]1

k Thermal conductivity °− −[W m K ]1 1

k0 Thermal conductivity at reference temperature
°− −[W m K ]1 1

ks Thermal conductivity for solid phase °− −[W m K ]1 1

kl Thermal conductivity for liquid phase °− −[W m K ]1 1

n Boundary normal vector ⋅[ ]
p Flow pressure [Pa]
p x( )k Linear independent functions ⋅[ ]
tf Total simulation time [s]
v Flow velocity vector −[m s ]1

v0 Initial velocity −[m s ]1

∼v Temporal flow velocity −[m s ]1

w Weight function ⋅[ ]
x Arbitrary fluid point [m]
xk Particle position at k-th iteration [m]
xi i-th particle position [m]
Γd Dirichlet boundary ⋅[ ]
Γn Neumann boundary ⋅[ ]
Φ Shape function ⋅[ ]
Ω A given fluid domain ⋅[ ]
β Coefficient of thermal expansion ° −[ C ]1

γ Weight function parameter ⋅[ ]
μ Fluid dynamic viscosity [Pa s]
μm Mushy zone viscosity [Pa s]
μs Fluid dynamic viscosity for solid phase [Pa s]
μl Fluid dynamic viscosity for liquid phase [Pa s]
ν Fluid kinematic viscosity −[m s ]2 1

ρ Fluid density −[kg m ]3

ρs Fluid density for solid phase −[kg m ]3

ρl Fluid density for liquid phase −[kg m ]3

∂Ω Boundary of fluid domain ⋅[ ]
D
Dt

Material derivative −[s ]1

∇ Gradient operator −[m ]1

Δ Laplace operator −[m ]2

tΔ Time step [s]
xΔ i Spatial differences m[ ]
yΔ i Spatial differences m[ ]
zΔ i Spatial differences m[ ]
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