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ARTICLE INFO ABSTRACT

This work presents an alternative view on the numerical simulation of diffusion processes applied to the heat and
moisture transfer through porous building materials. Traditionally, by using the finite-difference approach, the
discretization follows the Method Of Lines (MOL), when the problem is first discretized in space to obtain a large
system of coupled Ordinary Differential Equations (ODEs). Thus, this paper proposes to change this viewpoint.
First, we discretize in time to obtain a small system of coupled ODEs, which means instead of having a cauchy
(Initial Value) Problem (IVP), we have a Boundary Value Problem (BVP). Fortunately, BVPs can be solved
efficiently today using adaptive collocation methods of high order. To demonstrate the benefits of this new
approach, three case studies are presented, in which one of them is compared with experimental data. The first
one considers nonlinear heat and moisture transfer through one material layer while the second one considers
two material layers. Results show how the nonlinearities and the interface between materials are easily treated,
by reasonably using a fourth-order adaptive method. Finally, the last case study compares numerical results with
experimental measurements, showing a good agreement.
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1. Introduction

The hygrothermal transfer through porous structures is a matter of
concern in many areas such as building physics, geophysics, environ-
mental engineering and energy systems whose the transient evolution
of heat and moisture migration plays an important role. Particularly, in
the area of building physics, the heat and moisture transfer process
through the porous envelope, roofing systems and the ground can
strongly affect the energy efficiency, the thermal comfort of the occu-
pants and the durability of the components [1-3]. Therefore, reliable
assessment of hygrothermal transfer in building materials is a major
issue, requiring efficient numerical tools for heat and moisture transfer
in building materials [4].

As building material properties are temperature- and moisture-de-
pendent and the boundary conditions are driven by weather variables,
the models included in those tools are based on numerical approaches
using discrete representations of the continuous equations. To compute
the solution, standard discretization and incremental techniques are
applied, such as the ruter implicit scheme in Refs. [5,6] to solve large

systems of equations. Furthermore, when dealing with nonlinearities,
hygrothermal properties of porous materials have to be updated as a
function of the temperature and moisture content fields at each itera-
tion [7]. The difficulties to compute the solution increase, particularly
when using implicit schemes that require sub-iterations to treat those
issues. In the literature [8-10], the important numerical costs of si-
mulation tools are also mentioned and it is a matter of concern due to
the substantial scale of buildings, where heat and moisture transfer
phenomena have to be simulated.

In addition, in the models proposed in literature, the problem pre-
viously described is generally solved by traditional approaches such as
the finite-difference method [11], the finite-volume method [5,12,13]
and the finite-element method [14-16], which are well established in
the fields of thermal sciences and building physics. In these classical
approaches, the higher accuracy obtained for the space discretization of
the numerical schemes is to order ¢ (Ax2) . For a space standard dis-
cretization Ax = 10 ~2, it implies that the error ¢ on the solution of the
equations cannot be lower than ¢ (10 =*). Within the issue of com-
paring the model numerical predictions with experimental observations
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as carried out for instance in Refs. [17-19], it is of major importance to
control the accuracy of the solution.

For sure, the accuracy of the computed solution can be increased by
reducing the space and time discretization parameters. However, as
mentioned before, the standard approaches proposed in literature has a
high degree of freedom. Therefore, increasing the number of spatial and
temporal grid points will inevitably increase the computational time of
the numerical model. With high-order numerical schemes, it is possible
to have the same precision of low-order numerical schemes but with a
lower computational cost, as shown in Ref. [20]. For this reason, these
traditional methods have to be improved or even replaced by in-
novative and efficient ways of numerical simulation [21], particularly
with the issue of comparing the model predictions with experimental
observations.

Therefore, this article aims at contributing to the numerical devel-
opment of hygrothermal transfer, by proposing a new approach to si-
mulate the one-dimensional heat and moisture diffusive transfer trough
single and multilayered building porous materials. The Method of
Horizontal Lines is here proposed to solve the nonlinear heat and
moisture transfer to increase significantly the accuracy in space with a
low computational time of the numerical model. Usually, when using
finite-differences, the discretization follows the Method of Lines (MOL).
It means that the problem is first discretized in space to obtain a large
system of coupled ODEs. Here, a different point of view is proposed
based on discretizing first in the time domain to obtain a Boundary
Value Problem (BVP). Such problems can be easily solved using adap-
tive collocation methods of high order. This approach is investigated in
this paper to compute with high accuracy combined heat and mass
transfer problems in porous materials.

The manuscript is organized as follows. Section 2 details the phy-
sical model of heat and moisture transfer while fundamentals of the
proposed method are shown in Section 3. Numerical results are dis-
cussed in Section 4 and simulation are compared with experimental
data in Section 5. Finally, in Section 6, the main conclusions are out-
lined with future perspectives.

2. Physical model

The physical problem considers one-dimensional heat and moisture
transfer through a porous material defined by the spatial domain
Q, =10, L] and time domain Q, [0, 7]. The following con-
vention is adopted: x = 0 corresponds to the surface in contact with
the inside room and, x L, corresponds to the outside surface. The
moisture transfer occurs due to capillary migration and vapour diffu-
sion. The heat transfer is governed by diffusion and latent mechanisms.
The physical problem can be formulated as [22,23]:

g, .
P :3( laPL +5U6Pv)’
ot ox ox ox (1a)
T op 5] oT oP
+ w)— +cwT —% = —|[2=—+L,6,—|,
(Poco + pucw) G + cul = 6x( ax ax )
(1b)

where p, is the volumetric moisture content of the material, §, and k; ,
the vapour and liquid permeabilities, P, , the vapour pressure, T , the
temperature, R, , the water vapour gas constant, P., the capillary
pressure, ¢ , the material heat capacity, o, , the material density, c,, ,
the water heat capacity, 4, the thermal conductivity, and, L, , the
latent heat of evaporation. Equation (1a) can be written using the va-
pour pressure P, as the driving potential. For this, we consider the
physical relation, known as the xeLvin equation, between P, and P, ,
and the cLAUSIUS—CLAPEYRON equation:

Py
P=pRT ln(m),
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P,
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P,
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where P, comes from the relation ¢ = B,/F(T), in which ¢ is the re-
lative humidity. Thus, by neglecting the variation of the capillary
pressure and the mass content with temperature [16], the partial de-
rivative of P. can be written as:

P _ 0P.OP,  OP.OT  pRT P,
& P, dx 8T dx B, ox
In addition, we have:
G _ %y 38 P 90 0T _ py 56 OP
a ~ ap oP, ot 8T ot 8¢ 48P, at

Considering the relation p,, = w (¢) , obtained from the sorption
isotherm, and from the relation between the vapour pressure P, and
the relative humidity ¢ , we get:

Opw _ W($) P,
o  B(T) ot

We denote by

km (:igf —F §, :the total moisture transfer coefficient

under vapour pressure gradient

k v glgf L, &, :the total moisture transfer coefficient under vapour

pressure gradient

kr (:;gi A :the heat transfer coefficient under temperature gradient
det w'(®).

M- m.the moisture storage coefficient
ot

:gf PoCo + w(P)c,y :the energy storage coefficient
def

Ctm -

Ry T
klPl v

cr

[ T%:the coupling storage coefficient.
s

Considering the previous notation, Equation (1) can be rewritten as:

AP a AP
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Finally, the problem of interest is a coupled system of two nonlinear
parabolic partial differential equations, with vapour pressure P, and
temperature T gradients as driving potentials. Their boundary condi-
tions are expressed as:

Py

n~(kM (1. P) %

) =hu (P =P o®) - 8,0,

n(kr (T, P)S + k(T P52 ) =hp (T = T () = ¢, ()

+Lth(Pv_Pv,oc(t))y

where P, ., and T, stand for the vapour pressure and temperature of
the air, h )y and h ¢ are the convective transfer coefficients and n is the
normal that assumes + 1 or — 1 at the left or right boundary sides. If
the bounding surface is in contact with the outside air, g is the liquid
flow from wind driven rain and q , is the sensible heat from the rain:

o = 8§His

where, H,; is the water enthalpy. If the bounding surface is in contact
with the inside building air then g = 0 and the variable q  is the
enclosure and long-wave radiative heat exchanged among the room
surfaces:

m
Go=0, s§ol(Tj(x=0)* = (T(x=0))4,

j=1
where s is the view factor between two surfaces, o is the

STEFAN—BOLTZMANN constant, & is the emissivity of the wall surface, j re-
presents the m bounding walls.
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