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A B S T R A C T

In the paper, the thermal processes occurring in the axially-symmetrical domain of multi-layered thin metal film
subjected to a strong laser pulse are considered. The problem is described by the system of dual-phase lag
equations (DPLE) supplemented by the appropriate boundary and initial conditions (in the form corresponding
to the model considered). The possibility of domain melting is also taken into account. At the stage of numerical
computations, the implicit scheme of the finite difference method is used. The problems connected with the
modeling of the thermal contact conditions between sub-domains and finally the simulations of the melting and
resolidification processes are discussed in detail.The continuity condition given on the contact surface is con-
sidered in the form in which the lag times are taken into account. The results confirm the differences between
often presented solutions, using the dual-phase lag model supplemented by the ‘macroscopic’ type of these
conditions. The model of melting and resolidification results from the modified form of the DPLE for which the
derivative of temperature with respect to time is equal to zero. It results from the fact that the melting of pure
metals proceeds at the constant temperature.

1. Introduction

The considerations presented in this paper are based on the appli-
cation of the dual-phase lag equation (e.g. [1–4]) for numerical mod-
eling of the microscale heat transfer problems. As one knows, the
mathematical form of this equation results from the generalization of
the Fourier law, namely

+ = − ∇ +X t T X tq( , τ ) λ ( , τ )q T (1)

where q is a heat flux vector, ∇T is a temperature gradient, λ is a
thermal conductivity, X, t denote the geometrical co-ordinates and
time. The positive constants τq, τT correspond to relaxation time and
thermalization time, respectively. The relaxation time τq is the mean
time for electrons to change their energy states, while the thermaliza-
tion time τT is the mean time required for electrons and lattice to reach
equilibrium [5].

Using the Taylor series expansions, the following first-order ap-
proximation of equation (1) can be taken into account
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The well-known energy balance equation is of the form
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where c is the volumetric specific heat and Q(X, t) is the capacity of
internal heat sources. In the paper presented the function Q(X, t) results
from the laser heating.

From equation (2) it results that
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Introducing this formula to equation (3) one has
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Because (c.f. equation (3))
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In literature the other forms of DPLE are also presented. In parti-
cular, the second order Taylor expression of thermal flux and the first
order Taylor expression of temperature gradient are applied to describe
the phase lagging behavior [6]. In the papers [7,8], both the heat flux q
and the temperature gradient ∇T are expanded using the second order
Taylor formula.

The ‘classical’ form of the DPLE (with some assumptions corre-
sponding to the heat conduction proceeding in the domains of pure
metals) can be obtained on the basis of the microscopic two-step
parabolic model (e.g. [9,10]). The two-step model involves two energy
equations determining the heat exchange in the electron gas and the
metal lattice. The equations creating the model discussed, using a cer-
tain elimination technique, can be substituted by a single equation
containing a second derivative of temperature with respect to time and
a higher-order mixed derivative in both time and space. A detailed
discussion of the transition discussed is presented in [11].

The other group of heat transfer problems using the model resulting
from the generalized Fourier law is connected with the heat exchange
in domain of biological tissue. Recently here is a view that taking into
account the specific inner tissue structure the DPL model (or the
Cattaneo-Vernotte one) better than the well known Pennes equation
describes the bioheat transfer problems.

Some quite simple initial-boundary problems described by DPLE can
be solved using the analytical and semi-analytical methods. For ex-
ample, in the paper [12], the solution concerning the heating of the
semi-infinite plate in which the thermal processes are described by the
higher order DPLE supplemented by the simple boundary-initial con-
ditions is presented.The interesting analytical solution is discussed in
[13]. The author solved the 1D classical DPLE taking into account the
presence of internal heat sources caused by the laser interaction.The
solution has been obtained using the separation of the variables tech-
nique and Green's function method. The analytical solution of the dual
phase lag bioheat transfer equation using the finite integral transform
has been presented in [14]. A problem of the analysis of thermal da-
mage to laser irradiated tissue has been solved analytically in the paper
[15]. In turn, the Adomian decomposition method (ADM) and the
Adomian double decomposition method (ADDM) for solving the 3D
DPLE is proposed in the paper [16]. In the paper [17], the Laplace
transformation method has been used to solve the 1D dual-phase lag
model for a non-homogeneous (multilayered) cylindrical or spherical
domain. The boundary conditions have been assumed in the macroscale
convention, wherein between the subdomains the thermal resistance

has been taken into account.
The discussed works are not, of course, a complete review of the

analytical solutions of the problems in question.
To solve the heat transfer problems described by the dual-phase lag

equation, the different numerical methods are, definitely more often,
used. In most of the work in this area, the different variants of the FDM
are applied. The solutions based on the boundary element method [18],
the finite element method [19–21], the control volume method [22–24]
or the lattice Boltzmann method can be also found, for example
[25,26].

As mentioned, the most commonly used, however, are the different
variants of the FDM (see: e.g. [27–30]). In the paper [27], the numer-
ical model of heating of the double-layered thin film has been applied
for the analysis of the thermal deformation process. In the paper [28]
the 3D FDM numerical model of the thin metal film heating has been
presented. In [29] the explicit scheme of the FDM has been used. The
stability problem of the algorithm of this type is discussed in [30]. The
FDM numerical solutions of the inverse problems are also discussed
(e.g. [24,31]). In turn, the numerical solution of 2D DPLE using the
alternating directions approach can be found in [32]. It should be
emphasized that the number of papers devoted to the FDM applications
for the numerical solution of the problems described by DPLE is, of
course, much bigger.

As previously mentioned, recently there is the view of the DPLE
usefulness to describe the heat transfer in the biological tissue domain
[14,15,18–23,25,29], but these problems will not be discussed in more
detail here. So, without going into particularities in the papers [19–21]
the problems of hyperthermia treatment are analyzed. In [22,23] the
DPL model has been coupled with the radiative transfer equation (the
analysis of laser-irradiated tissue), additionally in [23] the nano-
particles have been introduced to the tissue region. The similar problem
has been discussed in [25] in which the thermal processes proceeding in
domain of the tissue during the laser-based photo-thermal therapy are
considered. In turn, in the paper [29] the cryosurgical treatment is
analyzed.

In the paper presented the multi-layered domain is considered.
Modeling of thermal processes in such objects, apart from the scientific
aspects, is of major practical importance (micro-technologies design).
The mathematical model of heat transfer processes is in this case cre-
ated by the system of the dual-phase lag equations, typical boundary
conditions on the external surface of the system and the continuity
conditions given on the contact surfaces (the ideal contact is, as a rule,
assumed). The initial conditions are also known, of course. The FDM
solution discussed in literature differ, among other things, in the choice
of the differential grid. Besides the typical meshes (the boundary nodes
are located directly on the boundary) one can find the solutions in
which the nodes are located not on the contact surface but at a certain

Nomenclature

c volumetric specific heat [W/(m3K)]
f level of time
I0 laser intensity [J/m2]
L volumetric heat of fusion [J/m3]
q heat flux vector [W/m2]
Q capacity of internal heat sources [W/m3]
Qm source function related to melting [W/m3]
qb boundary heat flux [W/m2]
R reflectivity of the irradiated surface
R0 domain radius [m]
rD laser beam radius [m]
S volumetric molten state fraction
T temperature [K]
Tm melting temperature [K]

T0 initial temperature [K]
t time [s]
tp characteristic time of laser pulse [s]
X={r, z} geometrical co-ordinates
w initial heating rate [K/s]
Z domain depth [m]

Greek letters

δ optical penetration depth [m]
λ thermal conductivity [W/(mK)]
Φ shape functions of FDM mesh
τT thermalization time [s]
τq relaxation time [s]
Ωe subdomains
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