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A B S T R A C T

The polarization approximations for the effective conductivity of isotropic multicomponent materials, con-
structed recently from a variational approach, are refined to include more information about the composites, if
available, to improve the accuracy of the scheme. The variable reference parameter of the approximation may be
determined from an asymptotic solution (in series) for the effective conductivity of a particular composite at
small volume proportions of the inhomogeneities, which contains more information about the composite than
the dilute solution result. Practically, the variable parameter can be calibrated through available reference
numerical or experimental macroscopic conductivities of the composite at finite volume proportions of the
component materials, or from a combination of those references. By construction, the approximations satisfy
Hashin-Shtrikman bounds, at least, over the range of the component's volume proportions within the extreme
reference points. Illustrations of applications are provided in a number of examples involving numerical and/or
experimental data, which shows the flexibility and usefulness of the approach.

1. Introduction

Many natural or artificial heterogeneous materials, though having
irregular microgeometries, often have relatively definite isotropic
macroscopic properties, because the inhomogeneities do not have pre-
ference direction distribution in the material space and share some
common specific feature. To estimate the macroscopic properties of the
composites, one may use variational approach [1–4], effective medium
approximation approach [5–13], computational methods [14–18].
Though a particular composite material has some specific geometric
feature, it is often difficult to include it into the estimates, besides the
properties and volume proportions of the components, and possibly the
approximate forms of the inhomogeneities in a matrix composite or a
particulate mixture. Popular effective medium approximations (EMA)
such as Maxwell, self-consistent, and Mori-Tanaka, … ones may diverse
from measured macroscopic properties of practical composites at sub-
stantial values of volume proportions of the included phases when the
contrast between the component properties is high. Instead, in appli-
cations, various semi-empirical formulae for the macroscopic con-
ductivities with fitting parameters are developed to approximate the
properties of specific composites by practitioners in the field

[7,8,19–25].
As a distinction from other EMA schemes, including the Maxwell,

self-consistent, Mori-Tanaka, differential ones, which have been de-
rived from the field equations using the inhomogeneities' dilute solution
reference, recent polarization approximation of Pham and Nguyen [26]
has been constructed from the minimum energy principles. The ap-
proximation contains a reference parameter that should be determined
from the inhomogeneities' dilute solution result for a matrix composite,
or from available numerical or experimental value of the macroscopic
conductivity of the composite at certain finite-volume-proportion point
of the component materials. Once the appropriate reference parameter
had been chosen, the approximation should obey Hashin-Shtrikman
(HS) bounds over all the ranges of volume proportions of the compo-
nent materials. Still, like many other effective medium approximations,
the approximation may be not very good at the components' propor-
tions far from the reference point, when compared with numerical and
experimental data.

In this work, refined polarization approximations are proposed to
account for more information about a composite - if available - to make
more accurate estimates of the effective property over a range of
components' volume proportions of interest. In the following section,

https://doi.org/10.1016/j.ijthermalsci.2018.05.021
Received 3 June 2017; Received in revised form 21 April 2018; Accepted 14 May 2018

∗ Corresponding author. Research and Application Center for Technology in Civil Engineering (RACE), University of Transport and Communications, 3 Cau Giay, Dong Da, Hanoi, Viet
Nam.

E-mail address: viettb@utc.edu.vn (B.-V. Tran).

International Journal of Thermal Sciences 131 (2018) 72–79

1290-0729/ © 2018 Elsevier Masson SAS. All rights reserved.

T

http://www.sciencedirect.com/science/journal/12900729
https://www.elsevier.com/locate/ijts
https://doi.org/10.1016/j.ijthermalsci.2018.05.021
https://doi.org/10.1016/j.ijthermalsci.2018.05.021
mailto:viettb@utc.edu.vn
https://doi.org/10.1016/j.ijthermalsci.2018.05.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijthermalsci.2018.05.021&domain=pdf


refined multi-point polarization approximations are proposed that
contain a few dimensionless free parameters. In the next sections, the
free parameters are calibrated through some available asymptotic so-
lution results for the inhomogeneities, or from a combination of dilute
solution, available numerical or experimental references, with illus-
trating examples, which show the usefulness of the approach.

2. One-point and multi-point polarization approximations

Transport properties of isotropic materials in the framework of
linear continuum mechanics are described by a material constant
(conductivity) relating solenoidal vector (flux) and irrotational vector
(field intensity). Let us consider an isotropic multicomponent material
in d-dimensional space ( =d 2,3) that consists of n isotropic components
of volume proportions vi and conductivities ci ( = …i n1, , ). The contacts
between the component materials are assumed to be perfect. The po-
larization approximation (PA) for the effective conductivity ceff of the
composite constructed from the minimum energy principles in general
d-dimensional space has the particular form [26]

∑= = ⎛

⎝
⎜ +

⎞

⎠
⎟ −

=

−

c P c v
c c

c( ) ,eff
c

i

n
i

i
*

1 *

1

*
(1)

where the reference parameter c* should be determined from a re-
ference dilute solution result (called PA0), or reference effective con-
ductivity of the composite at certain finite volume proportion point of
the components (called PA1). The approximations (PA0 as well as PA1)
obey Hashin-shtrikman (HS) bounds over all volume proportions of the
material components, once the reference effective conductivity satisfies
the bounds, while some other EMAs may not. In the case of matrix
composite with the matrix component = =v v c c,M M1 1 , for the polar-
ization approximation using dilute solution reference PA0, c* is the
solution of the equation
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presuming the respective dilute solution result for the suspension of the
same-geometry inclusions with the properties cα, volume fractions tvα

= … ≪α n t( 2, , ; 1) in the predominant matrix of conductivity cM is
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where Dα are some inclusion-functions, which are specific for every α-
inclusion-component's geometry.

For instance, in the case of two-component matrix composite, with
the volume proportions and conductivities of the matrix and inclusion
components being = =v v c c,M M1 1 and = =v v c c,I I2 2 , respectively,
equation (2) is solved explicitly
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where D c c( , )I M is the respective inclusion-function. The approximation
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with c* from (4) is PA0 for the two-component d-dimensional matrix
composite. In the case of sphere-like (circular-like) inclusion, we have
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In the 2-dimensional case of elliptic inclusions with the aspect ratio

=r a a:1 2 (a1 and a2 are the axes of the ellipse) one has
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It can be verified that PA0 for isotropic two-component matrix
composites with 3D ellipsoidal (or 2D elliptic) inclusions happens to
coincide with Mori-Tanaka approximation (MTA). Generally for multi-
component materials they differ. As an example we consider a 2D
periodic three-component configuration having isotropic macroscopic
conductivity, a periodic cell of which is presented in Fig. 1a. The con-
ductivity of the matrix phase is normalized to be unity =c 1M ; the
circular inclusions have conductivity =c 5I1 ; the elliptic inclusions
(aspect ratio 1: 5) - =c 10I2 ; the relative volume proportion of the in-
clusion components =v v/ 1I I1 2 . The finite element numerical results
(FE) for the effective conductivity, over a volume proportion range of
the included phases = +v v vI I I1 2, are compared with the approxima-
tions PA0 from (1)–(2) and MTA in Fig. 1b. The results are close to each
other, but differ; all lie within Hashin-Shtrikman bounds (HSU & HSL).

PA0 always satisfies HS bounds, while MTA may not. Norris [27]
has found a 3D three-component matrix composite with circular disk
inclusions, the MTA for the effective conductivity of which violates the
HS upper bound at certain components' conductivity and volume

Fig. 1. Approximations PA0 and MTA versus the finite element result FE, and
HS bounds for the conductivity of a 2D periodic three-component matrix
composite: (a)- a periodic cell; (b) The results in the case = =C C1, 5M I1 (cir-
cular inclusion), =C 20I2 (elliptic inclusion - aspect ratio 1: 5), =v v/ 1I I1 2 .
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