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A B S T R A C T

In present work, the theory of a modified fractional order generalized bio-thermoelasticity with variable thermal
material properties is developed. To keep the dimensions of fractional order thermoelastic theory consistent, a
new parameter is first introduced into the generalized fractional order heat conduction equation. One-layered
skin tissue with variable thermal properties is used for the numerical evaluation after the accuracy of the
modified fractional order bio-thermoelastic model is verified. The effects of fractional order parameter, the
added parameter and temperature-dependent thermal properties on the responses of skin tissue are discussed
and illustrated graphically.

1. Introduction

With the rapid development of laser, microwave, radio-frequency
and focused ultrasound, a number of modern thermo-therapeutics have
been widely used in clinical treatment. One of the biggest challenges in
thermal therapy is delivering the appropriate heat energy to the dis-
eased tissue without affecting the healthy tissue. Thus it is important to
understand how the temperature/stress fields affect the kinetics in the
thermal treatment.

It is noted that even a small change of heat-induced stress can
suppress immune response, alter production of hormones and protein
denaturation [1]. However, most studies mainly focus on the heat
conduction [2–11], the heat induced deformation is not considered.
Based on the Pennes' bioheat transfer equation [2], Shen et al. [12]
studied the static thermo-mechanical responses of skin tissue at high
temperature. Xu et al. [13,14] investigated the heat transfer, thermal
damage and heat-induced stress of human skin. Kim et al. [15] analyzed
the transient thermal-mechanical responses of innocuous tactile sti-
mulation induced by laser. Nevertheless, it can be found that the me-
chanical behavior has no effect on the distribution of temperature in
these studies.

It is well known that the classical uncoupled and coupled theories of
thermoelasticity predict [16] an infinitely fast propagation of thermal
signal, which contradict physical facts [17]. To eliminate such paradox,
a number of generalized thermoelastic theories involving a finite speed
of heat conduction have been proposed. Lord and Shulman [18] de-
veloped the generalized thermoelastic theory with one relaxation time

by using a wave-type heat conduction law to replace Fourier's heat
conduction law. Green and Lindsay [19] introduced the temperature
rate into the constitutive equations and developed a thermoelastic
theory with two relaxation times. Green and Naghdi [20–22] proposed
a theory based on three types constitutive equations, which labeled as
G-N I, II, III. When the theory is linearized, G-N I is equivalent to
Fourier's heat conduction law; G-N II predicts that heat propagates at a
finite speed and involves no energy dissipation; G-N III includes a
thermal damping term and thermal wave tends to diffusive with the
increasing of damping coefficient.

However, the classical and generalized thermoelastic theories fail to
accurately predict the temperature and stress of materials, such as
amorphous media, glassy, porous material, man-made and biological
materials/polymers when the media subject to cryogenic temperature
or transient thermal loading. Recently, fractional calculus has been
applied in diverse fields, including physics, chemistry, biology, hy-
drology and mathematical finance. One of the main reasons for its
popularity is that it has memory characteristic, which provides a nat-
ural setting for describing various transport processes in the complex
anisotropic and non-homogeneous media. Abel [23] first applied frac-
tional calculus to solve the tautochrone problem. The good agreement
with experimental results can be obtained when using fractional deri-
vatives to describe the viscoelastic materials [24–26]. Then lots of
physical models are developed in the context of fractional calculus,
such as heat conduction, diffusion, viscoelasticity and electricity
[27–31]. The existence and uniqueness of the solutions of fractional
differential equations have been verified in many theoretical studies
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[32–34]. Diethelm [35] proposed the numerical algorithms to deal with
engineering problems in the context of fractional calculus. Fractional
heat conduction in a composite metal medium was investigated by
Povstenko [36]. Povstenko [37,38] also proposed the quasi-static un-
coupled fractional order classical thermoelasticity and the thermo-
elasticity without energy dissipation by replacing the first-order time
derivative with a derivative of arbitrary positive real order α. The
Cattaneo-type space-time fractional heat conduction and diffusion
equations were built by Qi and Jiang [39], they obtained the analytical
solutions of the Cauchy problem. Ezzat et al. [40] obtained the thermal
behavior in biological tissue with the fractional form of Pennes' bioheat
transfer equation. Jiang and Qi [41] derived a thermal wave model of
bioheat transfer with Riemann-Liouville fractional derivative induced
by spatial heating. The time-fractional dual phase lag bioheat transfer
equation was built by Xu and Jiang [42].

In the above work, the material properties of biological tissue are
taken to be constant. However, at high temperature, thermal properties
are no longer constant and change with temperature [43–45]. The
temperature-dependent thermal properties in materials have become
very important in engineering, such as drying of porous solids, nuclear
fusion process, etc. Godfrey [46] has reported that the thermal con-
ductivity of ceramic would decrease 45% when the temperature in-
creased from 1 to °400 C. Lakhssassi et al. [47,48] and Tunc et al. [49]
studied heat conduction problems with variable thermal conductivity in
the context of Pennes' bioheat transfer equation.

So far, few attempts are made to solve the fractional order bio-
thermoelastic coupling problem with temperature-dependent thermal
properties, even if there are studies of variable thermal properties only
limited to heat conduction [47–49]. It should be noted that most ex-
isting studies about using the fractional derivative to replace the integer
order derivative directly but do not consider the fact that this sub-
stitution will result in dimensionally inconsistent [36–38,50–55]. In
present work, we aim to solve this problem of dimensionally incon-
sistent in fractional heat conduction theory [36–38] and develop a new
fractional order generalized bio-thermoelastic theory. The effects of
temperature-dependent thermal properties and fractional order para-
meter on the distributions of temperature, displacement and stress are
discussed and represented graphically.

2. Governing equations

It is known that the skin tissue is a highly complex and anisotropic

structure. In this section, we aim to modify the generalized fractional
heat conduction law of G-N II model [36–38] and formulate a new
fractional order generalized bio-thermoelastic model for the anisotropic
skin tissue.

Analogy to Povstenko [36], the fractional order generalized heat
conduction law of G-N II model takes the following form:
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In the present work, comma followed by sub-index denotes the
corresponding partial differentiation. Youssef [51] proposed the phy-
sical meaning of the fractional order parameter: < <α0 1 indicated
weak conductivity; =α 1 normal conductivity; < ≤α1 2 strong con-
ductivity. Ghazizadeh et al. [56] estimated the fractional order para-
meter basing on the heat conduction experiment carried out on pro-
cessed meat by Mitra et al. [57] and observed that < <α0 1 for meat.
So we take < ≤α0 1 in the present work.

Combining Eq. (1) with the law of conservation of energy, the time-
fractional order bioheat conduction equation can be expressed as:

∂
∂

⎛
⎝

∂
∂

+ − − ⎞
⎠

= ≤ ≤∗

t
ρc θ

t
ρ w c T T Q k θ α( ) (0 1)

a

a b b b b met ij ji, (3)

The item −ρ w c T T( )b b b b in the left side of Eq. (3) describes the heat
conduction between blood and tissue. It is assumed =T Tb 0 in present
work. Thus Eq. (3) can be rewritten as:
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An interesting phenomenon can be found in Eq. (4), noting that the
equation written in the time-fractional derivative form ≠α( 1) is not
dimensionally consistent (see Fig. 1), but no one has ever proposed or
discussed. Now we will modify this problem.

Analogy to Ferras [58] introduced a parameter to modify the frac-
tional order Pennes' bioheat equation [59]. If a new parameter τ[s] is
also introduced, Eq. (4) has the following form:

Nomenclature

S Entropy density of skin tissue
qi Components of heat flux vector (W/m2)
cb Specific heat of blood (J/kg K)

∗kij Material parameter of G-N theory
c Specific heat of skin (J/kg K)
c0 Constant specific heat at reference temperature (J/kg K)

∗k0 Constant material parameter at reference temperature
cijkl The elastic stiffness
ui Components of displacement vector (m)
χ Small quantity shows the influence of temperature (K−1)
eij Components of strain tensor
e The cubical dilatation
t Time (s)
fi Body force

Greek symbols

T Absolute temperature (K)
θ Temperature increment (K)

wb Blood perfusion rate (s−1)
σij Components of stress tensor (pa)
Tb Blood temperature (K)
δij Kronecker delta function
Qmet Metabolic heat generation (W/m3)
ρb Blood mass density (kg/m3)
τ The new added parameter (s)
ρ Skin tissue mass density (kg/m3)
α Fractional order parameter
ϑ Kirchhoff transformation of θ
γij The thermal constants
λ μandxx xx Lame's constants (kg/ms2)
T0 Reference temperature, =T 310K0
αt Thermal expansion coefficient (K−1)
Γ α( ) The gamma function

Subscript

x, y, z Space coordinate
i j k, , Number of space domain
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