International Journal of Thermal Sciences 132 (2018) 368-377

journal homepage: www.elsevier.com/locate/ijts

Contents lists available at ScienceDirect

International Journal of Thermal Sciences

International
Journal of
Thermal
Sciences

Cascaded lattice Boltzmann method for thermal flows on standard lattices = R

Linlin Fei®, Kai H. Luo™™"

Check for
updates

2 Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering,

Tsinghua University, Beijing, 100084, China

® Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK

ARTICLE INFO ABSTRACT

Keywords:

Lattice Boltzmann method
Cascaded

Thermal flows2010 MSC:
00-01

99-00

In this paper, a thermal cascaded lattice Boltzmann method (TCLBM) is developed in combination with the
double-distribution-function (DDF) approach on the standard D2Q9 lattice. A density distribution function re-
laxed by the cascaded scheme based on central moments is employed to solve the flow field, and a total energy
distribution function relaxed by the BGK scheme is used to solve the temperature field. The two distribution
functions are coupled naturally to provide a new TCLBM. In this method, the viscous heat dissipation and

compression work are taken into account, the Prandtl number and specific-heat ratio are adjustable, and the
external force is considered directly without the Boussinesq assumption. The TCLBM is validated by numerical
experiments of the thermal Couette flow, low-Mach number shock tube problem, Rayleigh-Bénard convection,
and natural convection in a square cavity with a large temperature difference. The simulation results agree well
with the analytical solutions and/or results given by previous researchers.

1. Introduction

The lattice Boltzmann method (LBM), based on the kinetic theory,
has achieved remarkable success as an alternative method to conven-
tional computational fluid dynamics (CFD) for thermal flow and heat
transfer applications during the past three decades [1-9]. Different
from solving the discretized Navier-Stokes (N-S) equations in tradi-
tional CFD methods, the LBM solves a discrete kinetic equation at the
mesoscopic scale, designed to reproduce the N-S equations in the
macroscopic limit. The main advantages for LBM over traditional CFD
include [10,11]: convenience to deal with complex boundary, easiness
of programming, high parallel efficiency, and natural incorporation of
micro and meso-scale physics.

The basic algorithm realization of LBM is collision-streaming or
streaming-collision, although other time and space evolution schemes
can also be used. To be specific, at each time step the collision is first
locally executed and followed by streaming the post-collision distribu-
tions to their neighbors, or just exchanging the above procedure [12].
Based on this algorithm, various collision operators can be adopted,
such as the single-relaxation-time (SRT) or BGK operator [13], two-
relaxation-time (TRT) operator [14,15], multiple-relaxation-time
(MRT) operator [16,17], and entropic operator [18-20]. Compared
with these extensively used operators, cascaded or central moment
operator, first proposed by Geier et al. [21] in 2006, is more recent. The

collision in the cascaded Lattice Boltzmann method (CLBM) is per-
formed by relaxing central moments to their local equilibrium values
separately, which is different from MRT LBM where the raw moments
are relaxed. As mentioned in Ref. [21], central moments can be ex-
pressed as polynomials of raw moments of the same order and below.
When a raw moment is relaxed (in MRT), all central moments at the
same or higher orders will be changed. This “cross-talk” is a source of
instability and can be removed in CLBM. By choosing the relaxation
parameters properly, CLBM can be adopted to simulate very high
Reynolds number flows using coarse grids without adopting any tur-
bulence models or entropic stability [21]. Recently, Lycett-Brown and
Luo [22] extended the CLBM to multiphase flow using the interaction
potential method [23] with the EDM force scheme [24]. Compared with
the LBGK method, the proposed model provided significant improve-
ment in reducing spurious velocities, and increasing the stability range
for the Reynolds number and liquid to gas density ratio. They further
extended the model to three dimensions and achieved high Weber
number, high Reynolds number and high density ratio simultaneously
in binary droplet collision simulations [25,26]. More recently, based on
a generalized multiple-relaxation-time (GMRT) framework, we pro-
posed a consistent method to incorporate a force field into CLBM and
clarified the relation between CLBM and MRT LBM [27].

Although CLBM has obtained success in high Reynolds number
single-phase flows and multiphase flows, its applications are so far
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limited to incompressible flows. Recently, we showed that for in-
compressible thermal flows, CLBM can improve the numerical stability
significantly compared with the BGK model [9]. The purpose of the
present study is to extend CLBM to Low-Mach compressible thermal
flows. Generally, there are three feasible ways to construct thermal
LBMs. The first one, multispeed approach [28,29], is a straightforward
extension of athermal to thermal LBMs, in which more discrete velo-
cities are adopted to match higher-order moment constraints of the
density distribution function for recovering the energy equation. In the
second one, a density distribution function is still used to simulate the
velocity field, while other methods, such as finite difference or finite
volume [30,31], are adopted for the temperature field. The double-
distribution-function (DDF) [1,2] approach is the third one, where two
different distribution functions are adopted to solve flow and tem-
perature fields, respectively. In DDF-based thermal LBMs, the com-
pression work and heat dissipation can be simply included, and the
specific-heat ratio and Prandtl number are adjustable. On the whole,
the DDF approach keeps the intrinsic features and simple structures of
the standard LBM, and more comparisons and discussions among the
three methods can be found in Refs. [2,4,32]. In the history, the first
DDF thermal model was proposed by He et al. [1] by using an internal-
energy-distribution-function-based DDF approach. Guo et al. [2] then
presented another DDF thermal model using a total energy distribution
function to solve the energy equation, which is simpler than He and co-
workers’ model. In Guo and co-authors’ model, the local temperature in
equilibrium density and energy distribution functions is replaced by the
reference temperature, thus it is a decoupling model and is limited to
Boussinesq flows. In 2012, Li et al. [4] developed a coupling DDF
thermal model which can simulate more general thermal flows, and the
model was extended to three-dimensions by Feng et al. [33] recently.
Inspired by these works, we construct a thermal cascaded lattice
Boltzmann method (TCLBM) in the present work based on the DDF
approach. In the TCLBM, a density distribution function is relaxed using
the cascaded scheme, a total energy distribution function is relaxed
using the SRT scheme, and the external force is considered directly
without the Boussinesq assumption.

The rest of the paper is structured as follows: Section 2 briefly in-
troduces the cascaded LBM. Section 3 presents a method to incorporate
the force field into cascaded LBM. In Section 4, we extend the athermal
CLBM to TCLBM. Numerical experiments are carried out for several
benchmark problems to validate the proposed model in Section 5. Fi-
nally, conclusions of this work are made in Section 6.

2. Cascaded LBM

In this paper, the D2Q9 lattice [13] is adopted, and the discrete
velocities are defined as ey = (0,0), e, =
(cos[(a — 1)7z/2], sin[(a — 1)7/2])c, for a=1-4, and
e, = (V2cos[(a — 9/2)7/2], ~2sin[(a — 9/2)7/2])c for a=5-8. In LBM,
c = &,/8;, here 6, and 6, are the lattice spacing and time step, and
c=6,=08 =1 is used in this work. For the derivation of CLBM, we
follow Lycett-Brown and Luo [22] and begin with the velocity moments
of the discrete distribution function (DF) f,, and then f, and f;? can be
formulated as functions of the corresponding moments and equilibrium
moments.

The raw moments are defined as

oMy = ZJ‘;ea’;e;y.

a (€))
in this notation, the zero-order moment My, = 1, and first-order mo-
ments M, = u, and My, = u, are conserved, corresponding to mass, x
and y momentum components, respectively. To get the formulations of
f, , another six independent moments are needed, including 3 second-
order moments (M, My, and M,;), two third-order moments (M,;, M,
noting that My; and Ms, are not independent of the first-order ones
owing to the lack of symmetry in D2Q9 lattice), and the fourth-order
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moment M,,. Recombining the second-order moments, the trace of the
pressure tensor, the normal stress difference and the off diagonal ele-

ment of the pressure tensor are given by
E =My + My, N =My — My, II=DM;. 2)

According to the definition above, we get the raw moment re-
presentation of populations:

Jo =p[My — E + M), G2
f=1 [\ +iEeN -M —M]
i = 5P| Mo+ 3 12 2 | (3b)
=1 [ +iE-N-M —M]
2= 5P| Mo+ b3 22 | (30)
f—l _—M +l(E+N)+M —M]
s = 5P| Mo+ 5 12— Mo |, 3d)
=1 [ +lE-mm —M]
4—2p_ o+ S 1 2 | (3e)
1
= —p I + My, + My, + My,],
5 4P[ b1 12 2] (30
f_l [=IT + My, — My, + My,]
6_4p b1 12 2215 (3g)
1
k= 2P T — My — My + My, (3h)
=1 [—IT — My + My, + My,]
13_49 21 12 20 (3D

It should be noted that other variables can also be expressed using their
moments in this form similarly.

Central moments are defined in a reference frame shifted by the
local velocity,

D fCCar — ux)™(eay — ).

pan =

4

The transformation between the raw moments and central moments can
be expressed using the binomial theorem as given by Lycett-Brown and
Luo [22]. To construct a CLBM, we follow the assumption adopted in
Ref. [34], by setting the discrete equilibrium central moments equal to
the corresponding continuous values,

= L7 ST e - wmE - wrdgg,

~eq

pM mn (5)

where f¢ is the local Maxwell-Boltzmann distribution for athermal
fluid at temperature Ty in continuous particle velocity space (§,, §,),

_@—wﬁ
P [ ’ ©)

2RT,
and the lattice sound speed ¢, = \/RT; is set to be 1/4/3 in this work.
Substituting Eq. (6) into Eq. (5), we can calculate the second order and
above central moments, and write them using the combination as done
in raw moments:

o

eq — e
U 27RTy

~, ~eq

T =N"=M, =M =o,

E* = 2RT,, M, = (RTy)* @

The implementation of CLBM is also composed of collision step and
streaming step. For the collision step, central moments are relaxed to
their equilibrium values, separately:

T =w T+ - w)i, (8a)
N =w N9+ 1 -w)N, (8b)
E* = Wzgeq + (1 - Wz)g, (8C)
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