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A B S T R A C T

This article presents a modular framework allowing to construct probabilistic models of coupled heat transfer
problems in complex systems. First, a substructuring approach has been applied to formalize the problem. This
process allowed for the coupling of physical field submodels, in our case temperature and radiative intensity.
Each physical model was established according to the conservation law inside of its domain (solid and fluid) and
the continuity laws at interfaces. Then, these models have been rewritten from the deterministic point of view to
a probabilistic one. This enables a recursive Monte Carlo algorithm to estimate the desired values. After a
validation stage, against academic cases, this framework is applied to examples emulating heat transfer in
buildings. This approach presents a major beneficial behavior for complex systems optimization: only the in-
fluential parts of the problem have an effect on the computational time. These regions are automatically
identified in a self-adaptive way, even in intricate or extensive geometries.

1. Introduction

For decades, the optimization processes have enabled engineers and
designers to improve systems during their design stages. Taking ad-
vantage of the increasing computational power, they now wish to op-
timize more and more complex systems (complicated geometry, multi-
variate and/or multi-objective design, multi-scale phenomena, multi-
physics problems). Simulation-based optimization methods are aiming
at finding, by an iterative process, an extremum of a function, known as
the objective function, which is evaluated thanks to the simulation re-
sults [1–3]. To perform these simulations, the most spread methods are
the grid-based quadratures. Yet their use usually requires to describe
complex systems by a great number of mesh elements owing to tortu-
osity, extensive geometry and/or multi-scale problems. Furthermore a
vast grid implies a proportional need of computing power and memory
to run a simulation. This limitation becomes all the more important
when the complexity of systems is increasing.

Another kind of quadrature exists: the stochastic grid-free quad-
ratures among which the Monte Carlo method is found. This method
was first formalized by Metropolis and Ulam, in 1949, in the neutron
diffusion field of science [4]. Fifteen years later, Hammersley and
Handscomb highlighted the opportunity to use this method in a large

variety of other domains among which the solution of linear operator
equations, statistical mechanics or polymer science [5]. This approach
allows for a stochastic estimation of a quantity of interest. The esti-
mation is the mean value and the standard error of a great number of
independent evaluations of a probabilistic model. Its two main char-
acteristics are being a meshless quadrature and presenting a con-
vergence rate independent of the problem dimension. Consequently,
the higher the number of problem dimensions and the more competitive
the Monte Carlo method is, compared to grid-based quadratures. In-
deed, the laters follow a decreasing convergence rate when the problem
dimension increase [6,7]. That is why even today the Monte Carlo
method is mostly restricted to problems described by more than 3 di-
mensions such as radiative transfer, finance, particle physics, acoustics,
cosmological models [8,9]. The drawback of a meshless approach is
that the result is a single value (and its standard error), which can be a
function evaluated locally or integrated over a domain. This could be a
considerable disadvantage if you are looking to the whole unknown
field. But, when using an optimization process, only the objective
function needs to be assessed, not the whole field. Hence, that main
drawback of the Monte Carlo grid-free approach can easily be overcome
for an optimization process. Indeed, using the Monte Carlo method to
estimate directly the objective function will only cost a single
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estimation.
According to the Los Alamos National Laboratory [10], two of the

main limitations to the Monte Carlo method spreading in simulation-
based optimization are: the ability to evaluate nonlinear functions of
integrals and the coupling issue because complex systems are generally
multiphysic. Recent works [11–13] are bringing perspectives in order to
alleviate the first challenge. We will focus on the second one, which is
also a current concern for the grid-based methods and is shared by a
wide variety of fields from astrophysics to biochemistry passing by
nuclear reactor engineering or rarefied gas [14–18]. When dealing with
multiphysic problems, the most spread approach consists in trying to
couple several models or even simulation codes, one for each physical
phenomenon, in a iterative converging process. The main difficulty is to
keep coherent results from different tools, which rely on their own
assumptions and have sometimes radically different solving strategies.

Regarding more specifically coupled heat transfer, and by instance
the coupling of conduction and radiative transfer, we can find in the
litterature different examples. Originally motivated by reducing com-
putational time within a context of lesser available computational
power, numerous attempts to couple grid-based methods for both ra-
diative and conductive heat transfer can be found [19–26]. That ap-
proach has the advantage of coupling two similar methods but suffers
twice of the drawbacks of grid-based quadratures as the systems be-
come more and more complex. Furthermore, examples of coupling a
grid-free method with a finite volumes or elements method can be
found in literature [27–31]. Usually, in these cases, the Monte Carlo
method is used to model the radiative transfer. These attempts have
spread thanks to the increasing availability of computational power but
are especially difficult to implement owing to the heterogeneity of the
techniques which have to cooperate together. Finally, the third
possibility is to use the Monte Carlo method to solve the whole pro-
blem. That approach allows to take advantage from both model

characteristics homogeneity and the aforementioned attractive features
of the Monte Carlo method. This goal was announced by the pre-
sentation of a first draft, in collaboration with the Meso-Star start-up,
during the CTRPM-V conference [32]. Nevertheless, according to the
best of authors' knowledge, this way of coupling has not been in-
vestigated yet. Although, Vignoles proposed very recently a method
dedicated to simulation inside of porous media by coupling two Monte
Carlo Random Walks, one for each phenomenon, in Ref. [33]. The idea
is to follow the spreading of a ”walker” population into the porous
medium by both a radiative random walk and a conductive one. Each
”walker” carrying a ”quantum of excess enthalpy”. At the end of a si-
mulation, the temperature perturbation field is approximated by
counting the number of ”walker” in each discretized volume element.
Even if this technique is also named ”Monte Carlo”, it features im-
portant differences with the Monte Carlo method used in the present
article which is using neither a volume discretization nor following an
energy quantum carrier population.

In order to solve the whole problem, i.e. coupled condution, convection
and radiative heat transfer, using a single Monte Carlo algorithm, the pre-
requisite is to get a probabilistic model of the system. However, the more
complex the system, the more difficult its modeling step. Therefore, to face
this challenge, we have created a framework easing the construction stages,
by using a systemic substructuring approach. This tool allows to assemble
components, which have been already independently modeled. This ap-
proach provides several benefits: modularity, versatility and ease to up-
grade. The aim of this article is to show how such an approach can be
applied to fully coupled heat transfer problems. First we describe the sub-
structuring approach and how the Monte Carlo algorithm can be used to
solve modular models. Next, each submodel is detailed. Then the reliability
of this approach is assessed by validating the framework results against
academic cases. Finally, an application to heat transfer in a building will
show the practical advantages of this strategy.

Nomenclature

cp Ω Specific heat capacity of the Ω domain [ − −J kg K. .1 1]
di j, Direction vector defined at the ri j, point [m]
ð Thermal dissipation coefficient [ − −W m K. .2 1]

Hemisphere of the directions incident from the Ω domain
at the x point (identifying name)

Hemisphere of the directions leaving the x point towards
the Ω domain (identifying name)

∂h Ω
Ω Convection coefficient at the interface ∂Ω, on the Ω fluid

domain side [ − −W m K. .2 1]
x ωI ( , ) Total directional intensity field at the x point towards the

ω direction [ ⊥
− −W m sr. .2 1]

+i j Mean length of the exploration paths used to compute the
estimation (calculated in number of interaction points)

+ṁΩ Total mass flow rate leaving the Ω fluid domain (positively
defined) [ −kg s. 1]

−ṁ (Ω )eΩ Mass flow rate coming from the Ωe fluid domain into the Ω
domain (positively defined) [ −kg s. 1]

∂
+n Ω

Ω Normal direction vector at the boundary ∂Ω leaving the Ω
domain [m]

ncond Direction vector along which the conductive heat transfer
takes place (1D plane model) [m]

P (event) Probability that the event occurs
pRV Probability density function associated with the RV

random variable
+q̇Ω Total net flux density leaving the Ω domain [ −W m. 2]
+Q̇mode

Ω Net flux leaving the Ω domain by the mode of heat transfer
(conduction, convection, radiation or enthalpy) [W]

+q̇mode
Ω Net flux density leaving the Ω domain by the mode of heat

transfer (conduction, convection, radiation or enthalpy)
[ −W m. 2]

q̇src
D2 Flux density of surfacic heat source at an interface

[ −W m. 2]
ri j, Vector of the j-th position of the total directional intensity

exploration path/series starting at the xi point [m]
∂s Ω
Ω Specularity ratio for the reflection at the interface ∂Ω, on

the Ω domain side
xT ( ) Temperature field at the x point [K]

Tref Reference temperature used for the radiative transfer lin-
earization [K]

ŵevent Monte Carlo weight associated to the event occurrence
Xi Random variable of the i-th position vector xi [m]
xi Vector of the i-th position of the exploration path/series

[m]
∈xi

Ω = ∈x: Ωi [m]
∈∂xi

Ω = ∈ ∂x: Ωi [m]

Greek symbols

∂α Ω
Ω Total hemispherical absorpivity of ∂Ω boundary, on the Ω

domain side
∂ε Ω
Ω Total hemispherical emissivity of ∂Ω boundary, on the Ω

domain side
λΩ Thermal conductivity of the Ω domain [ − −W m K. .1 1]
Ω Volumetric domain (identifying name)
∂Ω Domain boundary (identifying name)

∂ρ Ω
Ω Total hemispherical reflectivity at the interface ∂Ω, on the

Ω domain side
σ Stefan-Boltzmann constant: × −5.67 10 8[ − −W m K. .2 4]
σt Standard error of the computational time estimation (t) [s]
σT Standard error of the temperature estimation (T) [K]

∂τ Ω Total hemispherical transmittivity for the interface ∂Ω
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