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A B S T R A C T

This work deals with the solution of an inverse heat conduction problem aiming at the detection of contact
failures in layered composites through the estimation of the contact conductance between the layers. The spa-
tially varying contact conductance is estimated using a Bayesian formulation of the problem and a Markov chain
Monte Carlo method, with infrared camera measurements of the transient temperature field on the surface of the
body. The inverse analysis is formulated using a data compression scheme, where the temperature measurements
are integral transformed with respect to the spatial variable. The present approach is evaluated using synthetic
measurements and experimental data from controlled laboratory experiments. It is shown that only few trans-
formed modes of the data are required for solving the inverse problem, thus providing substantial reduction of
the computational time in the Markov chain Monte Carlo method, as well as regularization of the ill-posed
problem.

1. Introduction

The detection of internal failures in materials is a subject of ex-
tensive research due to its importance in several fields, for example, in
structural health monitoring [1–14]. With the recent advancement and
practical applications (e.g., in the aeronautic, space and petroleum in-
dustries) of composites consisting of layers of different materials,
nondestructive and noninvasive methods for the detection of adhesion
failures between the composite layers have been developed [2–15].
Heat transfer techniques can be found among these methods, by using
qualitative [1,2,7,13,14] as well quantitative analyses based on the
solutions of inverse problems [3–12].

In our previous works [3,4], the contact failures were detected
through the estimation of the contact conductance between the layers
of different materials from measurements of the transient temperature
over the surface of the composite. The approach used in Refs. [3,4] was
based on a Bayesian formulation of the inverse problem, with a total
variation prior model for the unknowns and using the Markov chain
Monte Carlo (MCMC) method for the inference of the Bayesian model.
The computational complexity of MCMC with large dimensional

problems is often prohibitive. Therefore, in this paper, we extend [3,4]
to accommodate a data compression scheme. The temperatures mea-
sured with an infrared camera are spatially compressed through the
integral transformation with eigenfunctions related to the actual phy-
sical problem. Only a few transformed modes are then used in the in-
verse analysis and the forward model is formulated directly in terms of
the transformed (compressed) temperatures. A similar data compres-
sion approach was used in Refs. [16,17] for the estimation of spatially
varying properties in a one-dimensional problem and is applied here
with a two-dimensional transformation. The data compression applied
in this work not only reduces the computational time required for the
Markov chain Monte Carlo method, but also provides regularization for
the inverse problem [18]. Conceptually, the integral transform data
compression scheme falls within the broader class of orthogonal de-
composition methods, such as POD – Proper Orthogonal Decomposi-
tion, Principal Component Analysis, Karhunen–Loeve decomposition
and Truncated Singular Value Decomposition [19–25]. The accuracy of
the proposed methodology is examined with simulated measurements,
as well as with actual thermographic data obtained with controlled
laboratory experiments [9], involving samples manufactured with
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designed contact failures of different formats.

2. Physical problem and mathematical formulation

The physical problem considered here involves heat conduction
through a plate with two layers, heated through its top surface by a heat
flux q (x,y,t), as illustrated by Fig. 1. The bottom surface of the plate is
thermally insulated and heat transfer is assumed negligible through its
lateral surfaces. The plate is initially at a uniform temperature, To, and
the physical properties of each layer are assumed homogeneous and not
dependent on temperature. The length and width of the plate are a and
b, respectively, while its thickness is denoted by c. A spatially dis-
tributed contact resistance between the two adjacent layers is modeled
by a contact conductance hc (x,y) [26]. For the inverse analysis, mea-
surements of the temperature at the top (heated) surface of the plate,
obtained with an infrared camera, are available.

The mathematical problem is written in dimensionless form by
using the following variables:
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and we obtain:
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where the contact interface is located at Z = Z1.

3. Forward problem

The forward (direct) problem associated with the formulation given
by equation (2.a-k) involves the determination of the temperature fields
θ X Y Z τ( , , , )1 and θ X Y Z τ( , , , )2 . The direct problem corresponding to
the transformed data is solved here by using a hybrid analytical-

Nomenclature

a,b,c dimensions of the plate
Bic(X,Y) dimensionless contact conductance
D total number of measurements
hc(x,y) thermal contact conductance
k thermal conductivity
kmax number of transient measurements
q(x,y,t) heat flux imposed on the top boundary
M number of elements in the spatial grid
P vector of parameters
T temperature
To initial temperature in the medium
X,Y,Z dimensionless spatial coordinates
Z1 dimensionless position of the contact interface
| A | determinant of matrix (A)

Greeks

α thermal diffusivity
β eigenvalue given by equation (6.a)

ϕ eigenfunction given by equation (4.a)
γ eigenvalue given by equation (6.b)
φ eigenfunction given by equation (4.b)
θ dimensionless estimated temperature
Θ vector of estimated dimensionless temperatures
τ dimensionless time
ψ dimensionless measured temperature
Ψ vector of measured temperatures

Subscripts

1,2 plates 1 and 2, respectively
i,j order of the eigenquantities in the X and Y directions,

respectively
ref reference values

Superscripts

∗ dimensionless thermophysical properties and heat flux
_ transform in the X direction
∼ transform in the Y direction

Fig. 1. Physical problem.
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