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A B S T R A C T

Non-Fourier one-dimensional unsteady heat conduction in a moving medium is investigated by using the
Cattaneo-Vernotte- Christov-Jordan (CVCJ) heat flux model for medium speeds less than (sub-critical), equal to
(critical), and greater than (super-critical) the thermal wave speed. Coupled partial differential equations are
solved simultaneously by a finite volume numerical method. Temperature and heat flux distributions for sub-
critical, critical, and super-critical flow conditions are presented for two example problems. The importance of
boundary conditions on the thermal wave propagation in both sub-critical and super-critical cases is discussed.
Approximate analytical solutions are presented which qualitatively substantiate the numerical results.

1. Introduction

Non-Fourier heat transfer in a stationary medium has been studied
extensively by many researchers using various analytical and numerical
methods [1–4]. In these studies, the Cattaneo-Vernotte (CV) heat flux
equation is used [5,6]. In one space dimension the CV model is de-
scribed by the equations
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In Eq. (1a) q is the heat flux, T is the temperature, x is position, t is
time, κ is the thermal conductivity, and τ is the thermal relaxation time.
In Eq. (1b) ρ is the density, cp is the specific heat, and c is the finite
thermal wave speed. For Fourier conduction the relaxation time τ is
zero and the thermal wave speed becomes infinite. In many small scale
and rapid transient heat transfer problems however, finite thermal
wave speeds are observed. They are very small in metals (∼pico-s) but
there are materials for which these values are much larger, such as
amorphous materials (∼10 s) and biological tissues (∼100 s) [7].

Christov and Jordan [8,9] pointed out that in a moving medium, the
CV model should be modified to make the constitutive behavior in-
dependent of rigid rotations. For rigid translation of the medium with
speed u it is sufficient to replace the time derivative appearing in Eq.
(1a) by the co-moving derivative to get
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It is shown in Ref. [8] that Eq. (1a) does not predict the correct wave
behavior in a moving medium, but Eq. (2) does. The present paper
focuses attention on Cattaneo-Vernotte-Christov-Jordan (CVCJ) heat
flux model, Eq. (2), applied to one-dimensional unsteady heat transfer
in a medium moving with a constant speed.

Non-Fourier heat transfer in a moving medium has been recently
studied by many investigators [10–18]. The CVCJ heat transfer model
has been used in several non-Fourier applications involving moving
media [10–18]. Only [10–12] [14], and [18]) involve either a rigid
medium translating with a constant speed or a heat source translating
with a constant speed. Of these, the most pertinent to the present work
are the papers by Gomez et al. [11], Al-Khairy and Al-Ofey [12], and Al-
Khairy [14]. In Ref. [11] the exact solution for steady one-dimensional
CVCJ heat transfer is presented for both sub-critical <( u c) and super-
critical >( u c) conditions. It is shown that a finite element scheme
equivalent to central finite differencing fails to reproduce this exact
solution in the vicinity of critical =( u c) conditions. This is similar to
the high Peclet number problem in the numerical solution of convec-
tion/diffusion problems. In Ref. [12] a Laplace transform solution is
reported for one-dimensional unsteady CVCJ heat transfer due to a
distributed heat source in a semi-infinite constant speed medium with a
vanishing temperature gradient at the boundary. This solution is ex-
tended to a finite constant speed medium with vanishing temperature
gradients at both boundaries in Ref. [14]. Only sub-critical and critical
conditions are considered in these papers.
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In Refs. [11] [12], and [14] the energy balance equation and the
heat flux constitutive equation are combined to produce a single partial
differential equation for the temperature. This will be called the con-
ventional formulation in the present discussion. Since the resulting
equation is second order in both time and space, two initial and two
boundary conditions for temperature are necessary and sufficient to
create a properly posed problem for the temperature. Once this problem
has been solved the heat flux constitutive equation is then solved se-
parately using the known temperature. In the present work the finite
volume method is used to obtain numerical solutions to the equations
governing the CVCJ model. It was found that application of the finite
volume approach to the conventional formulation appeared to work
well for sub-critical and critical cases but failed in super-critical cases.
To overcome this problem associated with super-critical applications, a
formulation has been used which retains a heat flux term in the partial
differential equation for the energy. This equation and heat flux con-
stitutive equation are then solved simultaneously by the finite volume
method in sequence for the temperature and heat flux distributions. As
discussed below, this approach appeared to work well over the entire
range of medium speeds. Heat transfer in a moving medium with
constant speed is the simplest example of convection/conduction heat
transfer. Thus, the present work is both of interest in itself and for ex-
tension to more general non-Fourier conduction/convection heat
transfer problems.

The remainder of this document is organized as follows. In Section 2
the two formulations of the governing equations for one-dimensional
unsteady CVCJ heat transfer in a moving medium discussed above are
presented. Numerical models based on a finite volume method for both
formulations are given in Section 3. Applications of these approaches
for two example problems are reported in Section 4. In Section 5, some
approximate analytical solutions are presented to support qualitatively
the numerical results obtained by the proposed numerical model. Sec-
tion 6 summarizes the work and important conclusions.

2. Governing equations

The enthalpy form of the energy balance equation may be written as
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In Eq. (3) h is the specific enthalpy, =h c Tp , and Q̇ is the rate of energy
generation per unit volume. Even though only homogeneous media are
considered in the present study, the enthalpy form of the energy
equation is employed to facilitate future extension to heterogeneous
media with phase change. Differentiating Eq. (2) with respect to x and
assuming a constant medium velocity and relaxation time produces
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In the conventional approach all ∂
∂

q
x
terms appearing in Eq. (4) are

eliminated by using Eq. (3). Solving for ∂
∂

q
x
from Eq. (3), substituting the

result into Eq. (4), and using Eq. (1b) leads to
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For >u c it can be seen that the effective thermal diffusion coeffi-

cient −( )1κ
c

u
cp

2
2 appearing in Eq. (5) becomes negative. Eq. (5) can be

solved with two initial and two boundary conditions for the tempera-
ture (enthalpy). Using this approach in conjunction with the finite vo-
lume numerical method was found to succeed for ≤u c but fail for >u c.
It is believed that this failure is due to the negative effective thermal
conductivity mentioned above.

In the conventional formulation Eq. (5) is decoupled from Eq. (2)
and in most available references heat flux results are not reported. An
alternate version of the heat flux equation can be obtained by sub-
stituting ∂

∂
q
x
obtained from Eq. (3) into Eq. (2) to yield
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Eq. (6) can be solved explicitly for the new time level heat flux with
the known new time level enthalpy (temperature) distribution obtained
by Eq. (5) at each time step.

In the present formulation, the second ∂
∂

q
x
term in the bracket in Eq.

(4) is retained. This produces
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There are two major differences between Eq. (5) and Eq. (7). First,
the effective thermal diffusion coefficient κ

cp
appearing in Eq. (7) is al-

ways positive. Second, Eq. (7) contains the heat flux term and must be
solved simultaneously with Eq. (2) for the temperature and heat flux
distributions. It was found that the use of this formulation in conjunc-
tion with the finite volume numerical method overcame the difficulties
discussed earlier associated with the conventional formulation for
super-critical cases.

3. Numerical method

Detailed discussions of the finite volume method adopted for the
present study are contained in Refs. [19,20]. A brief description of the
finite volume approximation of Eq. (7) is presented below. The finite
volume approximation of Eq. (5) (not presented explicitly herein) is
almost identical.

Eq. (7) is integrated over a nominal control volume as shown in
Fig. 1a. The resulting finite volume representation is

= + +a h a h a h bp p E E W W (8)

In Eq. (8)

= + −a D A( p ) max( F , 0)E e e em (8a)

= +a D A( p ) max(F , 0)W w w wm (8b)

The diffusion conductance and local Peclet number at the interface
of control volumes are identical to those of Fourier conduction/con-
vection problems, namely
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Using the power law scheme for the function A( p )e,w yields
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The modified flux due to a finite relaxation time is
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In Eq. (8f)
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The source term in Eq. (8) is
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