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ARTICLE INFO ABSTRACT

In numerical heat transfer, the model validation problem with respect to epistemic uncertainty, where only a
small amount of experimental information is available, has been recognized as a challenging issue. To overcome
the drawback of traditional probabilistic methods in dealing with limited data, this paper proposes a novel
model validation approach by using evidence theory. First, the evidence variables are adopted to characterize
the uncertain input parameters, where the focal elements are expressed as mutually connected intervals with
basic probability assignment (BPA). In the subsequent process of predicting response focal elements, an interval
collocation analysis method with small computational cost is presented. By combining the response BPAs in both
experimental measurements and numerical predictions, a new parameter calibration method is then developed
to further improve the accuracy of computational model. Meanwhile, an evidence-theory-based model validation
metric is defined to test the model credibility. Eventually, the famous Sandia thermal challenge problem is
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utilized to verify the feasibility of presented model validation method in engineering application.

1. Introduction

In thermal engineering, the experimental tests and computational
simulations are the two important means for system analysis. The large
number of experimental tests can obtain the intuitive and reliable re-
sults, but the expenses are always considerable, especially for complex
systems [1,2]. With rapid development of modern computer tech-
nology, the computational simulations play an increasingly important
role in engineering due to the relatively small cost. However, the strong
dependency on computational models creates a critical issue of quan-
tifying credibility in simulation accuracy, which can provide the deci-
sion-maker with the necessary information [3-5]. Model validation,
defined as the process of determining the degree to which a model is an
accurate representation of the real world from the perspective of the intended
uses of the model [6], is just the general technology for characterizing
this credibility of computational model before practical application. In
recent years, the model validation problem has received considerable
attentions and intensive investigations from many professional societies
and national laboratories [7-9]. The American Institute of Aeronautics
and Astronautics (AIAA) and the American Society of Mechanical En-
gineers (ASME) published guidance documents for model validation in
computational fluid dynamics and computational solid mechanics,

respectively [10,11]. The U.S. Department of Energy (DoE) emphasized
the importance of model validation in the Accelerated Strategic Com-
puting Initiative program [12].

As is known to all, uncertainties are widely involved in the real
world due to the unpredictable environment factors, inevitable mea-
surement errors and incomplete knowledge [13-15]. Thus, compared
with the traditional model validation activities in deterministic frame-
work, the uncertainty-based model validation is more feasible and
practical [16,17]. Generally speaking, the uncertainties can be classi-
fied into two categories: aleatory uncertainty and epistemic uncertainty
[18]. Using the sufficient sample statistical information, the aleatory
uncertainty is usually quantified as random variable or stochastic
process by probability theory. Up to now, a lot of investigations have
been conducted on aleatory uncertainty-based model validation
[19-22]. Based on stochastic uncertainty propagation and data trans-
formations, Chen et al. proposed a generic model validation method,
where the number of required physical tests can be efficiently reduced
[23]. In order to characterize the coherence between predictions and
observations in random uncertain circumstance, four kinds of valida-
tion metrics, namely classical hypothesis testing, Bayes factor, fre-
quentist's metric and area metric, were verified by a group of mathe-
matical examples [24]. Using Bayesian updates and prediction related
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rejection criteria, Babuska et al. developed a systematic probabilistic
approach for model validation [25]. Considering the high stochastic
dimension of modeling uncertainties, a nonparametric probabilistic
approach was investigated to perform the prior model in validating
process [26]. Besides, for the three famous challenge problems pro-
posed by Sandia National Laboratories, a lot of research results have
been obtained in the probabilistic framework [27-30].

In contrast to the aleatory uncertainty analysis with sufficient
available information, the epistemic uncertainty is more challenging
because of the incomplete knowledge, especially in the case of limited
data [31,32]. Several quantification methods, such as convex model
[33], fuzzy set [34], interval variable [35] and evidence theory [36],
have been proposed to characterize epistemic uncertainty, where the
evidence theory is considered to be the most capable. It is because the
concepts in evidence theory, such as focal element, basic probability
assignment and so on, can be flexibly defined and utilized, which means
the evidence theory could provide equivalent transformations to other
models by necessary extensions. Along with the widespread concern in
the recent two decades, evidence theory has obtained many achieve-
ments in uncertainty quantification and reliability analysis [37-40]. To
describe the imprecise data, Bae et al. developed a novel epistemic
uncertainty quantification technique by evidence theory, which can be
considered as an effective alternative to the classical probabilistic
methods [41]. Based on the Jacobi polynomial, Yin et al. proposed an
evidence-theory-based method for response analysis of acoustic system
[42]. To improve the computational efficiency of epistemic uncertainty
analysis, Xie et al. presented a radial point interpolation method in
evidence theory [43]. In the research work of Helton and Oberkampf,
the performance of evidence theory in reliability analysis was sum-
marized by a simple algebraic function [44]. Using the experiment
design technique, Zhang et al. presented an efficient response surface
method to evaluate the structural reliability in evidence theory [45].
From the overall perspective, evidence theory shows excellent super-
iority in epistemic uncertainty characterization and response predic-
tion. Unfortunately, its application in model validation has not been
reported by now.

In this study, a novel model validation method based on evidence
theory is proposed for the engineering heat transfer system under
epistemic uncertainties, which can efficiently assess the credibility of
computational model. The structure of this paper is organized as fol-
lows. The fundamental concepts in evidence theory are firstly reviewed
in Section 2. Subsequently, by using evidence variables to quantify the
input uncertainties, an interval collocation analysis method is proposed
in Section 3 to efficiently predict the response focal elements. In order
to improve the prediction accuracy of computational model, a para-
meter calibration framework is established in Section 4 by updating
response BPA. The famous Sandia thermal challenge problem is pro-
vided as the numerical example in Section 5 to verify the performance
of proposed method. Finally, we conclude the paper with a brief dis-
cussion in Section 6.

2. Fundamental concepts in evidence theory

Evidence theory, also named as the Dempster-Shafer (DS) theory,
was proposed by Dempster and Shafer to characterize the epistemic
uncertainty [36]. As the basis of evidence theory, some fundamental
concepts, such as frame of discernment (FD), basic probability assign-
ment (BPA), combination rule and so on, are firstly reviewed in this
section.

The frame of discernment (FD) @ is defined as an exhaustive set,
which is consisted of a group of mutually exclusive propositions as

follows
0 = {61, 63,...64} (@]

where 6; denotes the elementary proposition; n is the number of ele-
mentary propositions.
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Subsequently, all subsets of FD @ can construct a power set 2°,
which is adopted to represent all possible various propositions

29 = {, {61}, {62}, {64}, {61, 62}, {61, 03},... {61, 6}, ..., 6} 2

where @ stands for the empty set, and the total number of elements in
29 is 2",

In evidence theory, the probability can be assigned to any element
in the power set 2°. In other words, not only the elementary proposition
but also the proposition combinations can respectively obtain the in-
dependent probability, which is able to reasonably represent the im-
precise probability information. This kind of probability description is
called as the basic probability assignment (BPA), which can be denoted
by a function m: 2° — [0,1] mapping from 2° to [0,1].

Similar with the probability density function in probability theory,
the BPA is used to quantify the elementary belief measure of each
proposition in evidence theory. Thus, for any proposition A € 2°, three
kinds of BPA conditions should be satisfied

(i) m(A)>0 for any A €2°
(i) m@)=0

(ii) Y,com@A) =1 (3)

where the proposition A with positive BPA m(A) > 0 is named as the
focal element.

In many cases, the evidential information may come from different
sources. Thus, it is crucial to combine the available information to
update the BPA. For the same FD ©, assume that two independent BPAs
m; and m, have been derived from two different sources. Introducing B
and C to respectively express the corresponding propositions, then the
popular Dempster-based combination rule can be formulated as follows
to update the BPA m

0 if A=0
m(A) = YBnc=aMB)xmz(C) .
BN A] = lf A ;é 0] (4)
where
K= Y mB)xm(C)
BnC=d )

stands for all the inconsistent information.

Another combination rule, named as Yager-based combination rule,
is considered to be more suitable to the problem with strongly incon-
sistent information, where the updated BPA is calculated by

0 if A=
mA) =1 LpnceamB)Xmy(C)  if A#® and ©
Ysncea M (B) X my(C) + K if A=0 ©)

where K is the same as that in Eq. (5).
3. Response prediction with input evidence variables

In evidence theory, the elementary propositions in FD as shown in
Eq. (1) can exist in various forms. However, in practical heat transfer
system, the parameter epistemic uncertainty usually exhibits a certain
fluctuation around its nominal value. Thus, it is reasonable to adopt
continuous intervals to denote the elementary propositions in FD.

3.1. Input parameter characterization by evidence variables

First, the system input parameters with epistemic uncertainty can be
modeled as | independent evidence variables as follows

X =X, X%,...X) Q)

where X; € [X;, X;] stands for the evidence variable; the interval
[X;, Xi] represents the FD range of X;; X is the evidence variable vector.
For each evidence variable X;, the elementary propositions in FD
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